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We have found a one-complex-parameter family of Dirac actions which interpolates between the Min-
kowski and a Euclidean Dirac action. The interpolating action is invariant under the “interpolating
Lorentz transformations.” The resultant Euclidean action is Hermitian and SO(4) invariant. There is
no doubling of degrees of freedom of the Dirac fermion and no contradiction between the SO(4) invari-
ance and the Hermiticity property of the Euclidean propagator. The Euclidean theory so obtained also

satisfies the Osterwalder-Schrader positivity condition.

PACS numbers: 11.30.Cp, 11.10.Cd, 11.15.Ha, 11.30.Ly

For a variety of purposes, such as regularization of the
path integrals, nonperturbative calculations, and lattice-
gauge-theory calculations, Minkowski-space theories are
continued to Euclidean space. The procedure for Eu-
clidean continuation is expected to be continuous.

It was shown in Ref. 1 that when a theory involving
fermions is continued to Euclidean space the degrees of
freedom of a Dirac fermion have to be doubled so as to
avoid a contradiction between Euclidean covariance of
the fields and the form of the two-point function. Hence
the usual continuation procedure is not continuous. Fur-
ther, the Euclidean action so obtained does not have any
definite Hermiticity.

In this paper we show that it is not necessary to double
the degrees of freedom of a fermion when continued to
Euclidean space. We present a one-parameter family of
Dirac actions which interpolates between the Minkowski
and a Euclidean action. For all the allowed values of the
interpolating parameter the action is invariant under the
“interpolating Lorentz transformations.” The resultant
Euclidean action is SO(4) invariant and Hermitian. The
procedure for Euclidean continuation is continuous and
the degrees of freedom of a Dirac fermion are not dou-
bied. Contrary to the assertion in Ref. 1, there is no con-
tradiction between the covariance of the fields and the
form of the two-point function.

In Sec. (I) the usual continuation procedure is briefly
sketched and some difficulties associated with it are
pointed out. In Sec. (II) the new continuation procedure
is presented. The Osterwalder-Schrader positivity of the
lattice action so obtained is discussed in Sec. (III). Fi-
nally, the conclusions and some interesting features of
the new continuation procedure are given in Sec. (IV).

(I) The usual continuation procedure.— The Dirac ac-
tion in Minkowski space is given by

SM==fd4x vinGd—my. 1)
Here,
gpv=(+3_’_’—), {Yp:')’v} =2g}1V9
)

7;=Y57 Zyv= 4I4_ [')’y, ’}’v] .

* The action (1) is invariant under Lorentz transforma-

tions, which act on the fields as
V) =T)yx) =) =) Tw1"', @3)

where 7=y'y, and T(w)=exp(Z,,0*"). The usual
procedure for continuation involves replacing xo by
—ixg, which leads to the following Euclidean metric and
¥ matrices:
g =(=—, =, =), vi=—(D",
)

=1 lvi.rEl.
1\_Iote that, in Euclidean space, under SO(4) transforma-
tions,

TE(w) =exp(EL0#), v () =TE(@)y(x), (5)
however,

v yoy T () vl TE(w)]1 7Y (6)

Therefore the Euclidean action obtained from (1) by a
mere replacement of xg by —ixg is not SO(4) invariant.
This happens because of the extra yo in the action after
w'. Dropping this yo leads to a Euclidean action

SE=fd4xy/T(iBE—m)y/, @)

which is SO(4) invariant but leads to the following Eu-
clidean propagator: !

' _— 1 _ —_
(W yf(x)) = T fapF—m) s

xexpl—ip- (x—x")1. (8)

Here the left-hand side is Hermitian (with x — x') but
the right-hand side has no definite Hermiticity. To avoid
this difficulty it was proposed in Ref. 1 that the fermionic
degrees of freedom should be doubled when going to Eu-
clidean space. The SO(4)-invariant Euclidean action
given in Ref. 1 is

st= [ atxy GEE—m)y,, ©

with y transforming as the inverse of y, under SO(4).
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They are independent fermions and the Fourier expan-
sion of each of them contains eight independent Grass-
mann variables,! compared with four in Minkowski
space.? Thus there are eight independent states for an
electron in Euclidean space, in contrast to four in Min-
kowski space, which is difficult to understand physically.
Also, because of doubling the degrees of freedom, this
procedure for going Euclidean is not continuous. Hence,
a procedure for Euclidean continuation is needed which
avoids these problems.

(II) The new continuation procedure.—Let us now
consider a different procedure for Euclidean continua-
tion. Instead of continuing the time, we directly contin-
ue the metric. Let

g8, =(cos26/|cos20|,—, —,—) (0=<0=<=n/2, 6%x/4)
(10)

be the interpolating metric between the Minkowski and
the Euclidean metrics. Here 6 is the interpolation pa-
rameter. The noncompact group SO(3,1) goes over to
the compact group SO(4) at 8=x/4. Hence, if 9 is re-
stricted to take real values, the metric changes discon-
tinuously at this point. Therefore 8 is allowed to take all
the complex values, except n/4, between 0 and n/2. We
now define an interpolating action invariant under the in-
terpolating Lorentz transformations for all the allowed
real values of 8. To do so, we define the interpolating
gamma matrices 7/ as

[}

8 (yocosO+iyssin®), yf=vy;,

1
[cos26| /2
an

§ (yscos@—iyesin®), i, =+ 1y5 ¢,

1
» |cos26] 12

where 7, and ys are the Minkowski-space gamma ma-
trices, defined in Eqs. (2). These y matrices satisfy the
following relations:

{yl v =2¢2,, vl v8=0. (12)

The interpolating action is defined as

S"-fd“x(—g")I/ZWfM[i(ge)”Vyﬁav—m]y/. 13)
Here g° =detgf, and the matrix

M=y (14)
can be thought of as a “metric” for contracting the spi-
nors. It satisfies the relation

() TM=M). (15)

|

Using (11) and (15) we see that the fields transform as
follows under the interpolating Lorentz transformations:

W) =T%w0)y(x) =y ' IM =y IMIT ()] !,
(16)

where
T%w) =exp(Z],0"") .

(When 6 takes complex values, x, are also allowed to
take complex values. Transformations of x, depend on 8
and not on #*. Since the fields are functions of x, only
and not of x,, their transformations as well will depend
on 8 and not on 8*.) Using Egs. (11), (12), and (15) we
see that the action (13) is invariant under the transfor-
mation (16) for all the allowed values of the interpolat-
ing parameter 6. However, it is sufficient for our pur-
pose to have an invariant action for 6 =0 and /2. For
real values of & these transformations form a group,
which is SO(3,1) for 8 <a/4 and SO(4) for 8> n/4.
Thus, we have a well-defined invariant action for a con-
tinuous set of values of 8, 0 << 6 < /2.

Evidently, for =0 the action (13) reduces to the
Minkowski-space action (1). For 8=r/2 we have

ST m=iSE ==ifd4x yIML(—iysdo—70,) —mly. 7

Let us choose the anti-Hermitian Euclidean y matrices
to be the following:

Y6 =iy, vE =y, vE=—iyo=—(yE) =M=y =ir¥ .
(18)

In terms of (4) and (18) the Euclidean action in (17)
can be written as

sE= [ a*xy GrEYGRE—m)y. (19)

Since the action (13), for arbitrary 6, is invariant under
the interpolating Lorentz transformations given by (16),
it follows that the Euclidean action (19) is invariant un-
der the SO(4) transformations given by (5). This can
also be seen directly: y' transforms as the inverse of v
under the SO(4) transformations and the matrix £
commutes with £Z,. In fact, without iy£ the action (19)
will not be Hermitian.

The propagator for this Euclidean action can be found
directly? by functional differentiation of the Euclidean
partition function. The Minkowski-space vacuum-to-
vacuum amplitude in the presence of the sources y and
x 70 is given by

Wira'rol = f DGyt yo) Dyexp [i [S+fd“x(z*yow+w*m)] }
When continued to Euclidean space the measure D(y"y)Dy in Minkowski space goes over to D(y'iyE )Dy in Eu-

clidean space. Thus the Euclidean partition function is

WElyxtiyf] -f:l)(wfiysE)@wexp [S5+fd4x(z7iy55w+ yfriyfx)] .
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Here SE is the Euclidean action (19). Differentiating with respect to the sources y and yx'iy¥ yields®

(WG Iyt iy Elp) = _dlp tmly
2r)? p*—m?
(Here p?=—p,p,) Multiplying both sides by (iy£),
shows that both the left-hand side and the right-hand
side are Hermitian. Thus, without doubling the degrees
of freedom of the Dirac fermion, we have the correct Eu-
clidean propagator, which is SO(4) invariant. Further-
more, because of the presence of y£, the apparent con-
tradiction mentioned in Ref. 1, and discussed earlier, is
avoided.

Clearly, a partition function, and hence a propagator,
can also be defined for all the interpolating values of 6.

The matrix M in Eq. (14) is numerically equal to 7o
for all the values of 8. However, since the coefficient of
do changes from yo in Minkowski space to —iys in Eu-
clidean space, the “metric” M for contracting fermions
effectively changes from ¥, to iy£.

In Minkowski space, the Hermitian conjugate of the
fermions belonging to the (0,%) representation of the
Lorentz group should be contracted with those belonging
to the (+,0) representation, and vice versa, to form
SO(3,1) invariants. However, in Euclidean space, the
Hermitian conjugate of the fermions belonging to the
(0, ¥ ) representation of SO(4) should be contracted with
those belonging to the (0,%) representation, to form
SO(4) invariants. Since ¥y connects different helicities
but ys does not, the above-mentioned change in M from
7o to i7¥ is precisely the one that leads to the correct in-
variants in Minkowski and Euclidean space and avoids
the contradiction discussed in Ref. 1.

Thus, starting from an SO(3,1)-invariant action (1)
we have arrived at an SO(4)-invariant action (19) along
a continuous path. There is no doubling of degrees of
freedom of the Dirac fermion and the Euclidean action is
Hermitian. The procedure developed here generalizes
easily to arbitrary (even) dimensions and to theories with
arbitrary vector couplings. The Euclidean continuation
of theories in odd spacetime dimensions, of theories with
axial-vector couplings, and of Majorana and Weyl fer-
mions, will be presented elsewhere. >

The interpolating action (13) has the following dis-
crete symmetries. Parity:

Pxo=x9, Pxi=—x;, Pw=ygy/,

expl—ip- (x—x"]I. 1

time reversal:

Txo=—x0, Txi=—x;, Tz=z%, T6=0,

Ty=ys7215v,

Tlyt- - yl= Izzgzl (Ty") - (T];
and charge conjugation:

Cx=x, Cy=Ilyorv§l*v,

ely' - yl= |22:26| [(eyh - (@w];

where z is a complex number, and for the last two equa-
tions we have chosen a basis for the ¥ matrices (2) such
that ¥, is imaginary and all the other y matrices are real.
These equations reduce to the usual definitions of
discrete symmetries in Minkowski space? and Euclidean
space, '*3 for 6=0 and =r/2, respectively.

It is interesting to note that the Euclidean action (19)
is invariant under the following chiral transformation:

T=y'Texplivfa). (22)

yv— v =explyfa)y—y'—y
Since y¥ is anti-Hermitian, the Euclidean chiral trans-
formation (22) is a chiral scale transformation, unlike
the Minkowskian chiral phase transformation. This fact
leads to a better understanding of the chiral anomalies.®

(III) The Osterwalder-Schrader positivity.— Apart
from the SO(4) invariance, a Euclidean theory must also
satisfy the Osterwalder-Schrader (OS) positivity condi-
tion.**> The OS positivity for gauge-invariant operators
on a lattice was proved by Osterwalder and Seiler (by
reflecting with respect to a place cutting the time links in
half, i.e., for only “odd” separations).’ Their proof of the
OS positivity can be taken over for the lattice action ob-
tained using our procedure as follows.

When the independent fermions y; and y; in the Eu-
clidean action (9), obtained using the usual continuation
procedure, are replaced by w'(iyf) and v, the resultant
Euclidean action is the one obtained by our continuation
procedure, given by (19). The fermionic part of a lattice
gauge theory action is a gauged and the lattice version of
(9).° Hence, making the above replacement in the usual

Plyt -yl = cos20 [Pyt - . lattice action leads to the lattice action obtained using

v v |cos26] v ®yl; our procedure. Thus, the fermionic part of the lattice
action used in Ref. 5 becomes

A= ") GrEw(x) — + v ) GyE)iyElU(ge o Jvx—e)—=U (gxx+ey)u/(x+e#)]} (23)

xXEA

[The notation used here is slightly different from that of Ref. 6 where the Euclidean metric is 8,, and (yE )=+ vEl 1t
is worth noting that unlike the usual lattice action, the above action is Hermitian.
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The OS reflection operator © (0 =@T) is defined as

0% x ! x2x3) =(—x%x',x2x3),

OU(gr,) =U'(gox0,) , (24)
eylx) =ir§irEFy* (Ox)—Oly'(x)iyfl=—iyT(0Ox)y§

and
o(rWlyt(xiyfl - - - wx)) =*©U —iyT(O@x) ¥l - - - livfivEw*(Ox,)]. (25)

it is easy to verify that the proof of the OS positivity of |

the action (23) with the OS reflection operator as
defined above is the same as that given in Ref. 5, with
the independent fermions y, and y; used there, replaced
by w*(iysg ) and y, respectively. The general proof of the
OS positivity (for all separations) of the Wilson action
obtained using our continuation procedure is presented
elsewhere.’ '

The Hermiticity of the Euclidean action (23) may be
useful in overcoming the problem of complex fermion
determinant in the Monte Carlo simulation of high-
temperature QCD as follows. Consider, for simplicity,
the Euclidean partition function (20) without sources:

W5=f$(w*i7§5)$wexp(85)
=Det(iyE)Detliyf (8 —m)]. (26)

Here St is as given by (19). Notice that both the deter-
minants are of Hermitian matrices. A similar procedure
can be followed for a high-temperature lattice QCD to
yield the partition function for nonzero chemical poten-
tial to be the determinant of a Hermitian matrix. This is
in contrast to the partition function obtained using the
usual continuation procedure, which is equal to the
determinant of a non-Hermitian matrix and hence diffi-
cult to simulate numerically. A similar problem arises in
the Monte Carlo simulation of the chiral Schwinger
model. The implications of the new continuation pro-
cedure for this problem are discussed elsewhere. ¢

(V) Conclusions and discussion.— We have found a
one-complex-parameter family of Dirac actions which is
invariant under the interpolating Lorentz transforma-
tions. When the interpolating parameter is equal to O,
this action reduces to the usual Minkowski-space Dirac
action, and when equal to z/2, the action corresponds to
an SO(4)-invariant Hermitian action. Thus, a procedure
has been developed to go continuously from Minkowski
space to Euclidean space (and vice versa). In particular,
there is no doubling of degrees of freedom of the Dirac
fermion. The Euclidean action so obtained leads to the

1986

correct Euclidean propagator and, contrary to the claim
in Ref. I, there is no contradiction between the SO(4)
covariance and the form of the propagator. Further, it
has been argued that the lattice action obtained using
the present method of continuation satisfies the OS posi-
tivity condition.

Some of the interesting features of the continuation
procedure presented here are as follows. The Euclidean
Wilson action is Hermitian and the partition function for
the high-temperature QCD can be expressed as the
determinant of a Hermitian operator. The Euclidean
chiral transformation is a chiral scale transformation
(rather than chiral phase transformation), and this leads
to a better understanding of the chiral anomalies.®

Further, it will be shown elsewhere? that, when any
supersymmetric theory is continued using the present
procedure, the resultant Euclidean theory is supersym-
metric.
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