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Abstract. A simple neural network model is proposed 
for kindling - the phenomenon of generating epilepsy 
by means of repeated electrical stimulation. The model 
satisfies Dale's hypothesis, incorporates a Hebb-like 
learning rule and has low periodic activity in absence of 
shocks. Many of the experimental observations are 
reproduced and some new experiments are suggested. It 
is proposed that the main reason for kindling is the 
formation of a large number of excitatory synaptic 
connections due to learning. 

1 Introduction 

The phenomenon of generating epilepsy in laboratory 
animals by means of repeated electrical stimulations of 
the b ra in -  referred to as Kindling-  has been studied 
by biologists since 1961 (Delgado and SeviUano 1961; 
Goddard et al. 1969), and is still extensively investi- 
gated (Lothman et al. 1991; McNamara 1989). Kin- 
dling is considered to be a very good laboratory model 
for studying focal epilepsy. The experiment involves 
repeated electrical stimulations, via implanted bipolar 
electrodes, of some region of the forebrain, say the 
hippocampus. Each stimulation typically consists of a 
train of short (~few milliseconds) biphasic electrical 
pulses applied for a short period of time (,-~ few sec- 
onds). If the amplitude of the stimulating signal is 
sufficiently large, the very first or second stimulation 
elicits a characterestic post-stimulation electroen- 
cephalographic (EEG) discharge called the afterdis- 
charge (AD). Electric shocks of such large amplitude 
are called suprathreshold. The AD typically consists of 
bunches of high amplitude spikes separated by flat 
regions with very low activity. Low amplitude- or 
subthreshold - shocks do not yield an AD initially; but 
when administered a large number of times, these too 
produce an AD. Further application of both supra- and 
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subthreshold shocks lead to rapid increase in the ampli- 
tude, duration and complexity of the AD. This rapid 
increase eventually saturates and further stimulations 
after this stage lead to similar ADs on the average, 
which are accompanied by convulsions, motor seizures 
and increased oxygen consumption in the brain (Loth- 
man et al. 1991; McNamara 1989), indicating simulta- 
neous firing of a large number of neurons. This is the so 
called kindled state. The number of stimulations needed 
to produce the first seizure, from the occurrence of the 
first AD, is found to be approximately the same for 
both suprathreshold and subthreshold shocks (Loth- 
man et al. 1991; McNamara 1989; Racine 1972), and to 
depend on various other parameters such as the region 
of the brain being stimulated, and frequency and dura- 
tion of the stimulating signal (Goddard et al. 1969; 
Lothman et al. 1991; McNamara 1989; Cain 1981). 

In recent years, much attention has been focussed 
on the development of mathematical models of neural 
networks (Amit 1989; Rumelhart and McClelland 
1986). One of the primary objectives of research in this 
area is to develop models which mimic some of the 
complex system behavior observed in the brain. In this 
paper, we present a neural network based explanation 
of the process of kindling. Extensive neurophysiological 
investigations carried out during the last two decades 
(Bernardo and Pedley 1985; Dichter and Ayala 1987) 
indicate that epileptogenesis is a complex phenomenon 
involving factors related to both intrinsic properties of 
individual neurons (e.g. the intrinsic bursting ability of 
CA3 Pyramidal cells in the hippocampus (Wong and 
Prince 1981)) and properties of the synaptic connections 
(e.g. blockade of synaptic transmission from inhibitory 
neurons and/or enhancement of transmission from exci- 
tatory neurons (Bernardo and Pedley 1985; Dichter and 
Ayala 1987)) which join the neurons to form a network. 
In this work, we have concentrated on the network 
aspect and developed a model which attempts to ex- 
plain the kindling process as one of "learning" in which 
increased and correlated neuronal activity induced by 
the application of repeated electrical stimulations in- 
creases the efficacy of excitatory synaptic connections 
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through a Hebbian mechanism (Hebb 1949) of synaptic 
plasticity. The Hebbian mechanism of  synaptic plastic- 
ity considered by us is similar to the learning mecha- 
nisms assumed in neural network models of associative 
memory (Amit 1989). 

There exist a number of experimental observations 
which lend support to the proposed mechanism of 
kindling. The process of  kindling has many similarities 
(Cain 1989) with long term potentiation (a long lasting 
incresase of the synaptic efficacy following afferent 
tetanic stimulations) which is considered (Thompson 
1986) to be one of  the best available models of the kind 
of  synaptic plasticity that may underlie Hebbian learn- 
ing. Selective blocking of  the N-methyl-D-aspartate 
(NMDA) receptor channels, which are known (Bear et 
al. 1987) to play a crucial role in synaptic plasticity and 
learning, is found (Sato et al. 1988) to retard and in 
some cases, block the process of  kindling. Observed 
neurophysiological changes induced by kindling have 
been interpreted (Sutula et al. 1988) as evidence for 
"sprouting, axonal growth and synaptic reorganiza- 
tion". Transient epileptic discharges have been found 
(Ben-Ari and Represa 1990) to set in motion a cascade 
of  events which include mossy fiber sprouting and 
establishment of  new synaptic contacts. Possible rele- 
vance of  mechanisms of  learning and long term mem- 
ory to kindling was, in fact, suggested several years ago 
(Goddard  and Douglas 1975). 

In this work we have constructed and studied by 
numerical simulations a neural network model based on 
the premise that kindling is a Hebbian learning process. 
As discussed below, we find that this model reproduces 
qualitatively and provides an understanding of  a num- 
ber of  observations made in kindling experiments. 
These include the existence of  an AD threshold, initial 
rapid growth and eventual saturation of  the amplitude 
and duration of  the AD, insensitivity to the stimulation 
amplitude of  the number of stimulations needed after 
the first AD to reach saturation and rare occurrences of 
spontaneous seizures and status epilepticus in the kin- 
dled state. On the basis of  the observed behaviour of 
the model, we also make a few predictions which can be 
tested by experiments. 

2 The model 

Since we are primarily interested in the collective prop- 
erties of  the neural network, we adopt here a descrip- 
tion in which details of the internal structure of 
individual neurons are left out. The neurons in our 
model are represented by McCulloch-Pit ts  (McCulloch 
and Pitts 1943) binary variables {Si } each of  which may 
take the values 0 and 1. In the usual way (Amit 1989; 
Rumelhart and McClelland 1986), time is described in 
units of the order of  the absolute refractory period 
(-,~few milliseconds). The variables Si(t) representing 
the state of the ith neuron at discrete time t is set equal 
to 1 if it emits a spike during the corresponding time 
slice, and equal to 0 if it remains quiescent. Since the 
exact pattern of  synaptic connectivity in a particular 

region of the brain is now known, we have constructed 
a model which is consistent with a number of  neurobio- 
logical observations. The first among these is the so 
called Dale hypothesis of neuronal specificity (Eccles 
1964) according to which all the synaptic connections 
formed by the axon of an excitatory (inhibitory) neuron 
are excitatory (inhibitory). The synaptic matrix that 
describes interconnections among the excitatory neu- 
rons is constructed in such a way that a large number 
of low activity patterns ("memories") are stored as 
attractors of the underlying dynamics. This is similar to 
the Willshaw model (Willshaw et al. 1969). The as- 
sumed low activity of the stored patterns ensures con- 
sistency with the observation (Abeles 1982) that under 
normal circumstances, only a small fraction ( < 20%) of 
the neurons emit spikes at any particular instant of  
time. Similar (but random) sparse excitatory synaptic 
connections among CA 3 Pyramidal cells were assumed 
in existing neural network models (Knowles et al. 1985; 
Traub et al. 1989) of the hippocampal slice. Regarding 
the inhibitory neurons, it is known (Schwartzkroin and 
Weyler 1980; Traub and Wong 1983) that there are far 
fewer inhibitory neurons than the excitatory ones and 
the degree of  interconnections among inhibitory neu- 
rons is less than that among the excitatory neurons. It 
is generally believed (Amit and Treves 1989) that the 
functional properties of a network are governed by 
synaptic connections among the excitatory neurons, 
with the inhibitory neurons playing a subservient role 
of keeping the average activity of  the network low. The 
local nature of the action of inhibitory neurons suggests 
that they can react to the distribution of activity among 
the excitatory neurons on a shorter time scale than the 
excitatory neurons themselves. Due to these reasons, we 
do not consider explicitly the dynamics of the inhibitory 
neurons and represent their effect on the excitatory 
neurons by an inhibitory postsynaptic potential which 
is a function (Amit and Treves 1989) of  the mean 
activity of the excitatory neurons. We also introduce a 
set of "slow" synaptic connections among the excita- 
tory neurons and a corresponding slow inhibition. The 
slow synapses are constructed in such a way that they 
tend to induce transitions between the stored memory 
state (Sompolinsky and Kanter 1986; Kleinfeld 1986; 
Kleinfeld and Sompolinsky 1988). The time delay asso- 
ciated with their action ensures that the network stays 
in a memory state for some time before making a 
transition to the next one. Such time delays associated 
with synaptic transmission are known (Kleinfeld and 
Sompolinsky 1988) to exist in biological networks. In 
our model the dynamics of  the N excitatory neurons, 
represented by the binary variables {Si, i = 1 . . . . . .  N}, 
is governed by the net postsynaptic potential 
{hi, i = 1 . . . .  , N}, given by 

N 

hi= E [{JoSj-wSj)+ (1) 
j = l  

The synaptic matrix ~. stores q random low activity 
patterns represented by q N-bit "words" 
{ ~ f , p = l  . . . . .  q , i = l , . . . , N }  of ones and zeros. 
The total number of ones in each "word"  is assumed to 



be a small fraction of N. The matrix Jo is constructed in 
a manner analogous to the Willshaw model: 

q 
J u = l i f  ~ ~ ' ~ ' > 0  ( i # j ) .  

i*=1 

J,~ = 0 otherwise. (2) 

J, ,  = O .  

Equation (2) implies that each element of J,7 is either 
zero or one. This is clearly an idealization. However, 
the results presented here would not be affected 
strongly if the strengths of  the non-zero excitatory 
synaptic connections were allowed to have some varia- 
tion. The second term in the first set of curly brackets in 
(1) represents the contribution of the inhibitory neu- 
rons which, as discussed above, is assumed to be pro- 
portional to the mean instantaneous activity of the 
excitatory neurons. The strength of  inhibition is given 
by the parameter w, with 0 < w < 1. The terms in the 
second set of  curly brackets in (1), which depend on the 
state {S~ } of the network at an earlier time ( t -  ,), 
represent the time delayed inputs. The relative strength 
of the delayed signal is given by 2. The synaptic 
strengths for the delayed signal are modeled (Sompolin- 
sky and Kanter  1986; Kleinfeld 1986) by K o given by 

q 

K o . = l i f  ~, {~+1{~'>0 ( i # j ) .  
# = 1  

K/j = 0 otherwise. (3) 

K,i = 0 

with { q + t = {~. The update rule for the network is the 
usual one, viz. 

Rule 1. I f  the local field hi >>- 0, make Si = 1, and i f  
hi < 0 make S~ = O. 

I f  the network is in a state corresponding to some 
pattern {~, Jo try to keep the network in that state but 
K~j try to shift it to another state { ~ + 1. For  a sufficiently 
large value of 2 and suitably chosen values of  the 
parameters q and w, the network produces limit cycles 
in which it repeatedly goes through the memory states 
in a fixed sequence. The resulting small-amplitude peri- 
odic variation of the network activity is assumed to 
model the resting EEG (see Fig. 1). 

Repeated activation of a synapse may make it re- 
fractory due to exhaustion of presynaptic neurotrans- 
mitters (Guyton 1986). Earlier computer modeling 
(Knowles et al. 1985; Traub et al. 1989) of the epileptic 
hippocampal slice has shown that a certain amount  of  
refractoriness of synaptic transmission between excita- 
tory neurons is necessary for obtaining the experimen- 
tally observed "bunching" of spikes in the AD. This 
refractoriness of  synapses Ao ( =Jo or K~) is modeled by 
imposing the following constraint. 

Rule 2. I f  a synapse .4~ has been active for more than a 
time period t . . . .  then for the following period of  time trer, 
A o does not contribute anything to the localfield hi. 

The electric shocks are modeled as follows. There 
are more positive ions and less negative ions near the 
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Fig. 1. This is the kindled EEG. The number  of  neurons firing are 
plotted as a function of time, measured in units of  passes. The 
network relaxes after 80 passes and the last part  of  the plot is the 
resting EEG 

(implanted) negative electrode due to Coulomb interac- 
tion. When an excitatory (inhibitory) input arrives at a 
synapse near this electrode, larger number of positive 
ions (smaller number of  negative ions) are pumped in 
compared to the normal situation, leading to excess 
excitation (reduced inhibition). The reverse of  this hap- 
pens at the positive electrode. Thus a shock can be 
modeled by changing the strength of  inhibition w at the 
synapses near the positive and negative electrodes in the 
following way. The local field h; in presence of  an 
external shock s is given by an equation similar to (1) 
with the strength of inhibition w replaced by w - s near 
the negative electrode and w + s near the positive elec- 
trode (0 < s < w). 

The most important ingredient of our model is the 
incorporation of the following Hebb-like learning rule 
in the network dynamics. According to the classical 
Hebb rule, correlated excess activity of  two neurons 
causes an enhancement of  the strength of  the synapse 
connecting them. In our model, this rule takes the form: 

Rule 3. If, over a certain period, Si = 1 and Sj = 1 more 
often than some average value, make the synaptic 
strength Jv = 1. 

In other words, if the two neurons have above 
average firing rate over some period, then a synapse is 
formed between the two. Biologically this may corre- 
spond to the activation of  an existing but inactive 
synapse or to the formation of a new synaptic connec- 
tion. The learning takes place only at the excitatory 
synapses, as is also suggested by experiments (Kelso et 
al. 1986; diPrisco 1984). It is generally believed (Bear et 
al. 1987; Brown et al. 1988) that synaptic plasticity is 
more likely to take place around the spines of  the 
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excitatory neurons. The classical Hebbian enhancement 
of  synaptic efficacies is approximated in the above form 
since the synaptic strengths in our model take only two 
values 0 or 1. When the shock is absent, the above 
learning rule does not lead to formation of  any new 
synapse because the neurons which simultaneously fire 
more often than the average value correspond to some 
stored pattern and hence the corresponding J,~s are 
already equal to 1. However, due to the shock, a 
different set of  neurons fire which do not correspond to 
a stored pattern and hence some more Jus become 1, 
thereby increasing the connectivity of  the network. As 
will be shown later, this learning rule is the crucial 
ingredient that leads to kindling. 

The "withering" of  synaptic strength is assumed to 
be of  negligible amount,  over the period of time the 
shocks are given, and hence ignored. Also, no learning 
is incorporated for Ko. 

3 Computer simulations and results 

The network described above was simulated using a 
system of  200 neurons. The neurons were updated 
sequentially in a random fashion. The time needed for 
one pass (i.e. random sequential update of  all the 
neurons) was chosen to be the unit of  time. In the 
absence of  shocks, it was found that forty patterns, 
each with only about  ten neurons firing, could be stored 
in a stable fashion. The optimum value of  the weight w, 
for the above choice of  parameters, was found to be 
around 0.6-0.7. We chose the number of  patterns 
q = 2 0 ,  2 = 2  and w = 0 . 6 .  The delay period r was 
chosen to be equal to that needed for two passes. A 
synapse could continuously fire for a period /max ---- 10 
updates after which it was refractory for a period l r e f ,  

which was chosen randomly between 6 and 12 passes. 
We used a learning rule in which two neurons have to 
fire at least three times in the last ten updates to form 
a new synapse between the two. External shocks were 
assumed to change the local fields of two distinct 
groups of  20 neurons near the two electrodes. 

Different subjects (modeled by using networks with 
different realization of  initial patterns ~')  were given 
shocks with different amplitude, varying from 0.1 to w. 
As was done in most of  the experiments (Goddard et 
al. 1969; Lothman et al. 1991; McNamara 1989; Racine 
1972) the schedule of  shocks consisted of  giving a train 
of  biphasic pulses for 320 passes. Each pulse lasted for 
2 passes and was repeated after every 7 passes. The 
network was then allowed to relax in absence of any 
shock for 160 passes. It was then reset to some resting 
state and this "schedule" was repeated. This was re- 
peated sixty times (each application of the shock will be 
referred to as one day in the actual experiment). The 
following parameters were monitored as a function 
time: the EEG, which is assumed to be proportional to 
the activity of  the network given by Sup = ~ff= ~ S i "~ the 
total number of  excitatory synaptic connections Ju in 
the block of  neurons which feel the shock (J~hock), in the 
block of  neurons which do not feel the shock (Jnoshock), 

and in the block connecting the above two blocks of 
neurons (Jc .... ). The total number of synapses is de- 
noted by Jsum : Jshock q- Jnoshock -t- J c  . . . .  �9 

The plot of the number of  neurons firing as a 
function of  time, which will be referred to as the EEG, 
for the resting state is shown in the last part of Fig. 1. 
Very small shocks, s < 0.3 produced at the most 10% 
change in S,p and Jsum, and failed to produce an AD or 
kindling. Repeated application of shocks with 
0.5 > s  >0 .3  led to an AD after a large number of  
stimulations. The first AD occurred when Js,m was 
above 4000 (the value of  J s ~  before the application of 
shocks was ~ 2000), with typical values of  S~p oscillat- 
ing rapidly between 30 and 0, lasting for about 20 
passes, after which the network relaxed back to normal 
oscillations. As shown in Fig. 2, the number of  stimula- 
tions required to elicit the first AD decreases as the 
amplitude is increased and should be measurable exper- 
imentally. Shocks with s > 0.5 elicit ADs within the 
first few applications, indicating that these values are 
suprathreshold. 

As shown in Fig. 3, initially, the amplitude of  the 
AD increases rapidly as a function of  the number of  
stimulations. This rapid increase stops eventually and 
reaches a saturation value. Similar behavior has been 
observed in the laboratories (Racine 1972) and it is 
found that when the AD reaches the saturation value, it 
is also accompanied by seizures and convulsions, signal- 
ing the onset of the kindled state. The average number 
of  shocks needed, from the day of the first AD to the 
day when saturation values of  various parameters is 
reached, is nearly the same for both suprathreshold and 
subthreshold shocks as shown in Fig. 3. 

The ADs for both suprathreshold and subthreshold 
shocks look similar at the saturation value and a typical 
EEG is shown in Fig. 1. 
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Fig. 2. The number of stimulations required to elicit the first AD, 
averaged over fourteen subjects (for each data point), as a function of 
the amplitude of the shock 



E 
,,m 
< 

8 0 -  

60 

40 

20 

I I 

V',' 

I I I I I I I t I I I I I I I 

0 20 40 60 

Number of stimulations 

Fig. 3. The AD amplitude, averaged over 23 (43) subjects for 
suprathreshold (subthreshold) shocks, as a function of the number of 
stimulations after the first AD. The graph for suprathreshold shock 
(=0.56) is given by a solid line and for subthreshold shocks (=0.4) 
by a dashed line. Typical error bars are shown 
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Fig. 4. The rate of synapse formation averaged over 23 (43) subjects 
each for suprathreshold and subthreshold shocks, in different regions 
of the brain. The plots from top to bottom are; Jnosho~k for 
suprathreshold and subthreshold shocks, Jshock for suprathreshold 
and subthreshold shocks. Typical error bars are shown 

These results remained qualitatively the same under 
the following range of  parameters: when ~. was varied 
between 2 and 9, the weight w between 0.5 and 0.7, the 
number of memories q between 10 and 40, the number 
of  neurons given shock between 40 and 80, the refrac- 
tory period of  the synapse between from 2 to 10 passes, 
and the persistence period for learning between 3 out of  
5 updates to 3 out of 10 updates. 

4 Discussion and conclusions 

The results presented above can be understood as 
follows. 

The local field produced by a suprathreshold shock 
near the negative electrode is highly excitatory, leading 
to simultaneous firing of  nearly all the nearby neurons. 
During the next pass, the sign of  the shock is reversed 
and a large number of neurons near the other electrode 
fire. In the next pass, the shock is absent and the excess 
excitation of  the previous two passes leads to excess 
inhibition and only a few neurons fire. The network 
then relaxes to the resting state. Since the position of  
the electrodes is fixed, the set of  neurons which feel the 
shock have larger than  average firing rates and hence a 
large number of synapses are formed in this region 
within a few stimulations, i.e. Jshock increases rapidly as 
shown in Fig. 4. Succeeding electrical pulses turn on 
even more neurons some of which do not see the shock 
directly but feel the excess excitatory input from too 
many excitatory neurons firing in the shocked region. 
This, in turn, leads to increase in Jnoshock and Jc .... �9 
These new synapse tend to pull the network away from 

the resting state, thereby producing an AD and subse- 
quent increase of AD duration and amplitude as shown 
in Fig. 3. 

A subthreshold stimulus does not alter the strength 
of excitation or inhibition drastically. Hence, during the 
first few days, only a few extra neurons fire in the shocked 
region, leading to small changes in the number of  
synapses and no AD. As the subthreshold stimuli are 
repeated, the extra excitatory synapses formed by prior 
stimulation lead to larger deviations from the resting state 
and hence a larger rate of synapse formation as shown 
in Fig. 4. This "snowballing" process eventually leads to 
the appearance of  the AD and subsequent rapid kindling. 

The K U and the prestimulation J~ try to pull the 
network towards the resting state, and the network 
relaxes to it after a while even without synaptic refrac- 
toriness. Inclusion of  synaptic refractoriness puts the 
network in low activity states for longer periods, thereby 
increasing the probability of  it getting trapped in the 
resting state. The refractoriness is also responsible for 
the "bunching" of  spikes seen in the AD (see Fig. 1). 
Thus the epileptic state is transient. The excitatory 
synaptic connections formed due to shocks correspond 
to some high activity patterns. Even in the absence of  
shocks, when the instantaneous state of  the kindled 
network has a large overlap with one of  the high activity 
patterns, the activity of the network shoots up and the 
EEG  looks similar to that of  Fig. 1. Similar spontaneous 
seizures have also been observed in the laboratory 
experiments (Lothman et al. 1991: McNamara  1989). 

In our model, we did not include any "forgett ing" 
i.e. the possibility of reduction of  synaptic efficacies 
either by disuse or by some "unlearning" mechanism 
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such as H e b b i a n  a synch ronous  activity.  This  is not  quite 
real is t ic  because  if  no forget t ing  is present ,  every neural  
ne t work  o f  the type  cons idered  here will, in the course 
o f  its na tu ra l  t ime evolu t ion ,  eventual ly  become epileptic 
as a result  o f  increases in exc i ta tory  synapt ic  connect ions  
caused by learning.  Since this does  not  happen  in real  
systems,  some forge t t ing  mus t  be present .  The  t ime scale 
o f  forget t ing  will be c o m p a r a b l e  to the t ime scale o f  
learn ing  unde r  n o r m a l  c i rcumstances .  However ,  this 
t ime scale is much  s lower than  the ra te  o f  learning or  
synapse  f o r m a t i o n  dur ing  kindling.  F o r  example ,  in our  
model ing ,  the n u m b e r  o f  synapses increase,  by more  
than  200% wi th in  10 s t imula t ions ,  but  in absence o f  
shocks,  less than  10% ext ra  synapses  are fo rmed  dur ing  
the same per iod.  This  is also borne  out  by  the observa-  
t ion tha t  it  t akes  a b o u t  10 days  to k indle  a l abo ra to ry  
animal ,  bu t  the k ind led  s tate  persists  for  more  than  100 
days  ( G o d d a r d  et al. 1969). Thus  " fo rge t t ing"  has a 
negligible effect on  the t ime scale o f  k indl ing  and can be 
ignored  while s tudy ing  such phenomena .  

The  above  results  and  discuss ion show tha t  k indl ing  
occurs  due  to the f o r m a t i o n  o f  a large number  o f  
exc i ta tory  synapses  due  to learning.  This,  we believe, is 
the first theore t ica l  mode l l ing  and  exp lana t ion  o f  kin- 
dling. This  w o r k  also lends suppor t  to the H e bb i a n  
scheme o f  " l e a r n i n g "  o f  t ime pers is tent  pat terns .  

W e  have used this m o d e l  to s tudy o ther  aspects  o f  
k ind l ing  such as f requency dependence  o f  k indl ing  t ime, 
change  in A D  th resho ld  due  to dai ly  sub threshold  
s t imula t ion  and  genera t ion  o f  secondary  focus. These 
results  and  de ta i led  exp lana t ion  o f  work  repor ted  here 
will be p resen ted  elsewhere ( m a n u s c r i p t  in p repara t ion) .  
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