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( Electromagnetic Cascade )

High energy e~ or 4 hitting a material target, creates
an electromagnetic cascade inside the material.

Features of a Cascade

e Number of particles grows exponentiallly at the
beginning due to Bremsstrahlung and Pair
Production processes at high energy.

e Particles lose energy mostly through lonization
after reaching a critical energy.

e A net charge imbalance (more e~ than e) is
created in the cascade (Askaryan, 1961) due to the
following processes:
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Positron Annihilation (e™ + e, — 27)
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Electromagnetic Pulse &
Charged particles in a cascade radiates electromagnetic

wave coherently at radio frequency (Askaryan, 1961).
Far Field or Fraunhoffer Approzimations

e Distance of observation (R) is large compared to
the shower length.

e Wavelength of radiation is large compared to the
shower dimensions.

Electric field at a distance R due to a single charged
track in the medium of refractive index n is
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Cherenkov condition is 1 — ﬁ.gn = 0 which defines the
Cherenkov angle 6. = cos™'(;3).
At or very near 6., the field is
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Figure 1: Set up to calculate electric field from a single track
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Monte Carlo \

e Need Monte Carlo to simulate the cascade.

e Calculate electromagnetic pulse from the cascade:
g on track by track basis or

#® by parameterizing the cascade.

e Pioneering work has been done by Zas, Halzen and
Stanev (1992).

e Buniy and Ralston (1999) have also investigated
this isswe by parametrization method.

We use GEANT Monte Carlo simulation tool to

simulate electromagnetic cascades. We calculate
electromagnetic pulse on track by track basis.

Features of GEANT Monte Carlo
e Well understood and well documented.

e Widely used in high energy accelerator experiments
to simulate detectors.

e Better handle on Physical Processes.

e Detailed and flexible output.

e Ultimately want hadronic shower included.
\ /
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Figure 3: Moliere radius corresponds to the transverse development of the shower.
When the fraction U/E (Lhe ratio of total energy inside an imagimary tube along
the showers axis to the initial energy of the shower) is 0.1 (the horizontal straight
line), the corresponding radius is the Moliere radius for that material. It depends
on the material and not on the energy of the shower. Here we use showers of
energies 1 GeV and 10 GeV for each material.



/ GEANT Consistency Checks 5

Relationship between Radiation Length (X,), Moliere
Radius (Ras) and Critical Energy (E.):

E,

E.= Xo ; Es = 21.2 MeV (scale energy).
Ry

Also, E. ~ 605/Z ; Z — atomic number.

Methods

e (Calculate Moliere radius for different materials
using GEANT track informations.

e Calculate the critical energy using above formulas
and compare.

Results

Parameter | Iron Lead Ice
Xo (cm) 1.76  0.56 39.05
Ry (em) 2.1 1.6 13
E. (MeV) | 17.77 742 63.7
(23.3) (7.4)

\Fl.eference:sr Nelson et al. (1966) and Bathow et al. (1970).
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Figure 2: Average energy of 300 50 GeV electrons vs distance in om. Crosses
indicate Monte Carlo data points and the solid line is the exponential fit. This it
gives a radiation length of 11.5 £ 3.2 em. 0.611 MeV kinetic energy threshold was

used in all 300 cases.
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Track lengths in meter
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Track lengths in Ice (GEANT and ZHS)
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Number of particles (e+p)

30 GeV Electron Shower in Iron
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Number of particles
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Depth Profiles in Ice (GEANT and ZHS)

Depth in radiation length
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R x E(nu) in volts/MHz
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Comparison Table for GEANT and ZHS

100 GeV cascades in Ice. Ey, = 0.611 MeV.

Quantity GEANT ZHS
Total track length (m) 400+ 5 642
Track length (¢ + p) (m) 375+ 4 519
Track length (e — p) (m) 70+ 8 131
Number of (e + p) 111 + 26 155 + 45
Number of (e — p) 20+ 11 37+ 14
Charge excess ~ 18% ~ 24%

Cherenkov peak at 1 GHz 7.5x107? 14 x 108
(Volts/M H2)
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R x E(nu) in volts/MHz

Frequency Spectrum at the Cherenkov Angle
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Conclusions

e GEANT Monte Carlo simulation tools has been
adapted for the RICE experiment.

e Many different consistency checks have been done
and obtained reasonable agreements.

e Electromagnetic Pulse calculations have been done
for cascades of energy ranging from 100 GeV to
1 TeV. Results can be scaled up to ~ 100 TeV.
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e Initial setup has been done for Hadronic cascades.

¢ GEANT can be easily adapted for other materials
and is ideal to simulate accelerator experiments.



