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 Collective kinetic effects and Coulomb collisions are essentially important in a great variety of plasma

physics problems such as laser and particle beam interaction with plasma, shock waves and plasma expansion,

plasmas heating, and many other phenomena.  At present the simulation of nonlinear plasma phenomena in

hydrodynamic or collisionless limits is a conventional and widely used approach, but the simulation methods for

electromagnetic processes in a collisional plasma have not been developed sufficiently. The problem is that the

Fokker-Planck equation for the collisional plasma dynamics is very difficult as regards either analytic or direct

numerical investigation.

An effective approach to overcome these difficulties is the method of stochastic differential equations [1].

It is known that the equation of Fokker-Planck and Langevin equation are the alternative methods for the

description of Markovian diffusion process ( )r
v t . Thus, the starting point of our work is the stochastic

equivalence of these methods, i.e. we are looking for the nonlinear Langevin equation:

d v d t F Di i i k k/ = + ξ , which describe the particle motion in collisional plasma. Here F Di i k,  are the

deterministic functions and ( )
r

ξ t  is the random white noise with the following characteristics:

( ) ( ) ( ) ( )< > = < + > =
r

ξ ξ τ ξ δ δ τt t ti k i k0 , , .  So, our purpose is to derive this equation and to

generalize the well known PIC-method for the case of collisional plasma.

The Langevin approach can be simply applied when the integral of collision can be written as a function

of velocity. But, as for the description of Coulomb collisions by the Landau integral of collisions, the kinetic

equation for the fα has an integral dependence on the fβ  (where fα and fβ are the distribution function of particles

of species α and β respectively). In general case the linearization of integral of collisions was proposed in Ref.[1].

The method developed is applied directly for the diffusion model of collision integral:
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where v v ui i i= −  ;  ( )T T x t= β

r
,  and ( )r r

u x t,  are the temperature and average velocity of particles β, ν

is the collision frequency. The corresponding stochastic differential equation is derived and numerical algorithm

is developed and tested.

The method is also applied directly when the approximate dependence of fβ on the velocity is known. So,

the Langevin equation was derived for the "quasi-Maxwellian" distribution [1]:

( ) ( ) ( )f / e x p /β β β β β βπv n m T m T= −2 2
3

2 ( v - u ) 2
r r  , where ( )n x tβ

r
,  , ( )T T x t= β

r
,  and

( )r r
u x t,  were calculated independently. The equation derived is exact in the asymptotic cases (for example, in

the case, when the collisions with a background are dominant), and in general case this equation can be regarded

as an improved model. The test problems of beam velocity relaxation and temperatures relaxation in the two

component plasma were considered and a good agreement with a theoretical solutions was obtained.

There is a wide range of plasma physics problems for which the integral of collisions can be written as

an explicit function of velocity. This is the case when the collisions between the electrons and relatively cold ions

are dominant (this assumption corresponds to the so-called Lorentzian plasmas). In this case the integral of

collisions has the form:
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where: a /= Z npe eΛω π4 4  , ωpe  and n e  are the plasma frequency and electron concentration, Z e is the

ion charge, Λ  is the Coulomb logarithm.  The corresponding Langevin equation is [2]:
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The account of ions mobility leads to the obvious substitution 
r r r
v v u ion→ −   in the stochastic term of Eq.(2),

where 
r
u ion  is the hydrodynamic velocity of ions.  The stochastic equations of plasma particles motion (2) and

d x d t v
r r r

/ =  along with the Maxwell equations make up a complete system which is alternative to the plasma

description in terms of distribution function. Based on the symmetrical stochastic integral we can write the

following expressions for finite differences:
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where ( )∆ ∆
r r rη ξ γ= =∫ t dt t  is an increment of diffusion process in the time step ∆t  and  the random

value 
rγ  has a normal distribution with mean zero and standard deviation one. We used these expressions for

the collisional PIC-code creation and solved the test problem of Lorentz plasma conductivity in which a good

agreement with the theoretical dependence of conductivity on plasma parameters was obtained.

Using the approach developed, we considered the problem of the short laser pulses interaction with

overdense Lorentzian plasmas [2]. The temperature dependence of the absorption coefficient is calculated in the

wide range of plasma parameters including both collisional and collisionless regimes. For the case of strongly

nonlinear regime of laser-plasma interaction the strong longitudinal electric field at the plasma boundary is

observed. The generation of a high frequency radiation as well as the formation heated electrons is investigated.

It is shown that the electron-ion collisions behave like a filter - they decrease the fraction of heated particles with

relatively low energies and practically do not influence the more heated electrons.

We conclude by mentioning that this approach is applicable to various problems in collisional plasma

simulations.
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