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1.  Introduction

Efficient techniques are available for representing electron-neutral and ion-neutral collisions within
particle-in-cell / Monte Carlo (PIC / MC) codes [1], but Coulomb collisions are usually omitted because it is
difficult to treat them efficiently.  This can lead to serious errors, particularly because Coulomb collisions are
essential in populating the high-energy tail, and thus driving the distribution toward Maxwellian.

It is extremely inefficient to represent Coulomb collisions as two-body interactions mediated by the
shielded Coulomb potential, since time steps smaller than the plasma period are required, and even on this very
short time scale any given electron will be scattering off many other particles simultaneously.  A better approach
is to use the Fokker-Planck equation, which in effect sums up the frictional and diffusive effects of many small-
angle Coulomb scatterings, and thus permits the use of much longer time steps.  Takizuka and Abe [2] developed
a binary collision model, based on the direct-simulation Monte Carlo technique of Bird [3], but with the collision
cross-section representing the Fokker-Planck process.  This approach has the correct properties and conserves
energy and momentum exactly, but the accounting associated with pairwise collisions is complex and rather
slow.  An efficient alternative approach, developed recently by Jones et al [4], is to calculate the Fokker-Planck
coefficients on the grid, transform the Fokker-Planck equation into an equivalent Langevin equation, and use a
Monte Carlo method to scatter individual particles according to the Langevin equation.  However, in [4] the
diffusion was assumed to be isotropic and independent of the particle velocity v, the friction coefficient was
assumed to be proportional to v, and both the friction and diffusion coefficients were assigned the Spitzer values,
which are mean values based on an isotropic Maxwellian distribution of scatterers.  These assumptions limit the
usefulness of the formulation, particularly because the correct friction and diffusion coefficients fall off rapidly
for superthermal particles.  In situations where Coulomb collisions are in competition with other processes which
drive the electron distribution away from Maxwellian (e.g., inelastic electron-neutral collisions which extract
energy from the high-energy electrons), inattention to this velocity dependence can strongly distort the high-
energy part of the electron distribution.

In this paper, and in more detail in Ref. 5, we extend the Langevin / Monte Carlo approach of Jones et al
by properly including the velocity dependence of the friction and random walk, and properly representing the
anisotropic nature of the random walk. We do need to retain one key approximation to reduce the scattering
process to a numerically tractable form:   the scatterer velocities are treated as if they are distributed isotropically
in their center-of-mass frame.  We have shown [5] that the method is highly accurate for anisotropy aspect ratios
up to about two, and that the isotropy requirement applies only to the thermal part of the scatterer distribution.
In many applications, this limitation is quite acceptable, since isotropization typically proceeds much more
rapidly than other processes of interest, such as Maxwellianization of the high-energy tail.  In those cases where
the isotropic-scatterer assumption is a serious limitation, better results can still be obtained efficiently by
representing the scatterer distribution as a superposition of several isotropic distributions displaced from each
other in velocity space.

2. Formalism

The standard form [6] of the Fokker-Planck equation for shielded Coulomb scattering of particles of
species 1 off particles of species 2 (species 1 and 2 may be the same) is
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In PIC codes, it is impractical (in terms of numbers of particles, computation time, and statistical
fluctuations) to actually compute the coefficients H(v) and G(v) as multiple integrals, and then perform numerical
differentiations.  But if the scatterer distribution function f2 (~)v  is a function of only the magnitude of the
velocity, in the reference frame in which the scatterer fluid velocity u2 is zero, the Fokker-Planck equation can be
reduced [5] to a much more tractable form, with
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The velocity derivatives in Fd(v) and D(v), Eqs. (1), can then be calculated analytically from Eqs. (3), which
greatly reduces noise in the simulation.  We find Fd(v) = Fd(v)(v/v), with
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Since G is a scalar function of the scalar variable v, the tensor ∂ ∂ ∂2G / v v  is diagonal in a coordinate system
with the 3-component parallel to v. The only non-zero components of the tensor D are D33 and D11=D22, with
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In a PIC code, these velocity-dependent integrals can be accumulated as grid quantities at the same time that the
particle densities are laid down on the grid.  One may wish to average these quantities over some appropriate
spatial volume, to reduce the fluctuations resulting from the finite number of particles at any grid point.

If the distribution function f v2 (~) is not isotropic in any reference frame, we can still use (3-5) by defining
and substituting an isotropized distribution ( )f d d fe2 0 20

21 4(|~ | ) / sin ( )v u v− ≡ ∫ ∫π θ θ ϕπ π .
The Fokker-Planck equation (1) is equivalent to the Langevin equation

∆ ∆v F Q= +d t ,         (6)

where ∆v is the change in a particle's velocity, due to e-e scattering, during an infinetesimal time step ∆t, and Q
is a random velocity vector chosen from the distribution
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Using Eqs. (4) - (7) and taking averages over the stochastic variable Q, one can show that energy and
momentum are conserved, to first order in ∆t, provided that the distribution function f2(v) is actually isotropic in
its center-of-mass frame.  However, small non-conservation errors can occur, due to:  (i) second and higher order
effects in ∆t;  (ii) statistical fluctuations in the numerical average of Q due to the finite number of particles;  (iii)
non-isotropy of f(v2) in the frame chosen for use in Eqs. (3-5), or (worse yet) this frame not being the exact local
center-of-mass frame; (iv) spatial smoothing of the coefficients.  We shall discuss strategies for insuring exact
conservation, and (a related point) for extending the time step ∆t that may be used.  The ultimate limitation on ∆t
is one of accuracy.  Thus, ∆t should be no more than a fraction of the e-e collisional relaxation time, or any
shorter time scale imposed by other aspects of the simulation, e.g. the characteristic times for inelastic electron-
neutral scattering, escape of electrons to the walls, etc.
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For electrons scattering off ions, the rate of energy exchange is down by order me/mi, which makes it
negligible for many purposes.  If we choose to neglect energy exchange and treat e-i scattering as simply pitch-
angle scattering of the electrons off infinitely massive ions, then the formalism becomes particularly simple.  It is
then appropriate to approximate the ion velocities as zero, so that Eqs. (2) reduce to H=Zi

2/v,  G=Zi
2v.  According

to Eqs. (5), the diffusion coefficients are D33(v) =  0,  D11(v) = D22(v) = (4πne4Zi
2 / m2v)λ. Τo insure that electron

energy is conserved exactly in every collision, we can simply specify ∆v3 as the solution of v2 = (v+∆v3)
2+Q1

2+
Q2

2, where Q1, Q2 are the stochastic increments to the velocity components normal to v, chosen from the
distribution (7).  If we neglect second order in Q1/v and Q2/v, this becomes simply ∆v3 = (Q1

2 + Q2
2)/2v.

3.  Computational Examples

We present two simple computational examples as test cases.  In each case, the Fokker-Planck coefficients
(4,5) are computed over a spatially uniform region consisting of 35 cells and containing 15,000 macroparticles to
represent the electrons.  The electrons are scattered at intervals ∆t = 8×10-9 sec.

A.  Approach to Equilibrium

Here we consider the evolution of the electron distribution from an anisotropic and non-Maxwellian initial
condition, with e-e scattering the only physical process represented in the simulation.  The initial distribution is a
flat-topped cylinder in velocity space,
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where v⊥≡(vx
2+vy

2)1/2, Θ( )v  is the step function, mvz 0
2

 /2 = 2 eV and mv⊥0
2

 /2 = 4 eV.  The plasma density is 1012

cm-3.  Since the Fokker-Planck coefficients decrease rapidly with v, the approach to equilibrium should proceed
rapidly  for  electrons  in the  low-energy (thermal) range,  and more slowly in the high-energy tail.   Fig. 1 shows

plots of the  reduced  electron  distribution  functions  f v dv v f( ) ( )|| ≡ ∫ ⊥ ⊥
∞ 20 π v  and f v dv f( ) ( )| |⊥ −∞

∞≡ ∫ v  at  four

different  times.   To exhibit Maxwellians as straight lines,  the abscissa in these plots is chosen to be  εz ≡ mevz
2/2

or  ε⊥ ≡ mev⊥
2/2.  Figure 1a shows the initial distributions.  In Fig. 1b, at the early time [7]  t = 1×10–8 sec, the

distribution functions have become rounded but are still anisotropic and non-Maxwellian.  In Fig. 1c, at t=7×10–8

sec, the distribution is isotropic and close to Maxwellian in the thermal range, but is still anisotropic and non-
Maxwellian in the high energy range.  Finally, in Fig. 1d at time 2×10–7 sec, the distribution functions are
isotropic and Maxwellian over their entire energy range.

B.  Balance Between Heating, e-e Collisions, and Inelastic Collisions

In this example we model, in a very simplified way, the combined effect of several processes that occur in
an electron cyclotron resonance (ECR) discharge:  plasma heating, e-e collisions, and electron energy loss due to
ionizing collisions.  In the model, electrons with energy ε < 3 eV are heated every time they pass by a "resonant
zone" located at z = 3 cm, by giving each electron a velocity kick ∆v chosen randomly from a Gaussian
distribution with mean value m(∆v)2 /2 = 1 eV.  We also include electron energy loss due to "ionizing collisions"
with argon atoms:  In the model, an electron loses exactly 15.76 eV of energy at each such collision.  For these
collisions, we use the ionization cross section for Ar, which increases from about 10–16 cm2 just above εiz = 15.76
eV, to a maximum of 3.9×10–16 cm2 at 60 eV.

We run the simulation until the electron energy distribution function (EEDF) reaches equilibrium.  Figure
2 shows the results for several cases with differing values of the plasma density ne, but with neutral gas pressure
equal to 5 mTorr in each case.  The e-e collision rate is thus proportional to ne, while the electron-neutral
collision rate is the same for each case.  In Fig. 2a , at plasma density 1010 cm–3, electron-electron scattering is
weak and ionization energy losses deplete the tail of the distribution function for energies above εiz.  In Fig. 2b, at
density 1011 cm-3, e-e scattering is strong enough to drive the electron distribution to Maxwellian in the regime
below εiz and to significantly replenish the distribution above the ionization threshold.  In Fig. 2c, at density 1012
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cm-3, e-e scattering is easily strong enough to redistribute energy from the heating region (mainly ε < 5 eV) to
the tail region, and the equilibrium distribution is very nearly Maxwellian over the entire energy range.
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Fig. 1.  Reduced electron distribution functions f(v||) (solid curve) and f(v⊥) (dashed curve)
            at times (a) t = 0, (b) 1×10–8sec, (c ) 7×10–8sec, (d) 2×10–7sec.
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Fig. 2.  Electron energy distribution functions for Ar at pressure 5 mTorr, after steady state has been reached.
            Solid curve:  ne = 1010 cm–3.    Dotted curve: ne = 1011 cm–3.    Dashed curve:  ne = 1012 cm–3.
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