Atomic Quantum sensors in space

W. Ertmer
Institute of Quantum Optics (IQ)
University of Hannover, Germany

From Quantum to Cosmos

Airlie Center, May 22-24, 2006

Fundamental Physics Research in Space

Fundamental Physics in Space

Fundamental Constants

Fine-structure constant

"Variable" constants

Gravitational Constant

CLOCK TESTS

Quantum

Mechanics

QUANTUM MATTER

Decoherence

Ultra-low temperatur

Special Relativity

Symmetry

Speed of light

ATOM INTERFEROMETRY

Gravity

Gravity Mapping

Gravitomagnetism

EP-Tests

Laser Ranging

Atom Interferometry

IQO-Teams

MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

Fields of interest:

- Inertial standards and references
- Gravimeters
 - earth observation
- testing of relativistic effects and gravity
 - Testing the weak equivalence
 - principle
- Drag-free sensors

position

Signal at the output ports

time

S
$$\sim \cos[(\phi_3 - \phi_2) - (\phi_2 - \phi_1)]$$

See e.g.: Ch. J. Bordé, Gen. Rel. Grav. 36, (2004), 475

Sagnac-Effekt

Rotational induced Phase shift:

for Light:

7

$$\Delta \boldsymbol{\varphi}_{rot} = \frac{4\pi}{\lambda c} \stackrel{\rightarrow}{A} \cdot \stackrel{\rightarrow}{\Omega}$$

for Atoms

$$\Delta \varphi_{rot} = \frac{4\pi}{h} m_{at} \stackrel{\rightarrow}{A} \cdot \stackrel{\rightarrow}{\Omega}$$

Gain by de Broglie-waves : $\sim 10^{11}$

Rotation sensing

IQO-Teams

MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status &

Next steps

Perspectives

FINAQS

Atlas

Conclusion

 $\Delta\Omega_E/\Omega_E$

- .10⁻⁰ Earth rotation
- **1**0⁻¹
- 10-2
- 10-3
- .10-4 Seismic
- **1**0⁻⁵
- 10-6
- .10-7 Tidal forces
- -10⁻⁸ Variation of earth rotation
- -10⁻⁹ T our goal (single shot)
- .10-10 Relativistic effects
- .10-11 Galactic rotation

10-12

Different Methods:

Resolution:

 $10^{-8} - 10^{-9}$ rad

in 24 h

10⁻⁹ rad in

1 year

 $10^{-10} - 10^{-11}$ rad/s $\sqrt{\text{Hz}^{-1}}$

Resolution:

Atom Interferometry

IQO-Teams

MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

·Atlas

Conclusion

Benefits of atoms:

- quantum standards
- intrinsic gain by matter wave of 10¹⁰ compared to light
- ideal microscopic test masses
- Alternative and complementary

technique

Ring Laser Gyroscope

Quantum Sensors

IQ-Teams

MOTIVATION

CASI

- Concept
- Key elements
- ·Status
- Next steps
- •Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

tät Hannove

Atomic Sagnac Interferometer

Coherent source for atom interferometry

Cold Atom Sagnac Interferometer

11.1

IQO-Teams MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status & Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- double interferometer for differential measurement
 - discrimination of rotation and acceleration

- transportable setup
- stability and control
- big enclosed area

- Investigation of different measurement strategies and
- interferometer topologies
- flexible configuration (online switching)

CASI: concept

IQO-Teams
MOTIVATION
CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Interferometer in Mach-Zehnder-type topology
- (spatial and/or temporal domain possible)
- Two photon Raman transitions as beam splitters
- intense and flexible sources of cold ⁸⁷Rb atoms
- sensitivity: 10⁻⁹ rad/s Hz^{-1/2}

C. Jentsch, T. Müller, E. Rasel, and W. Ertmer, Gen. Rel. Grav, 36, 2197 (2004)

Experimental details: Atomic source

IQO-Teams

MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

• 2D-MOT delivering high flux

 $(4x10^{10}at/s)$ of cold atoms

flux enhancement by additional pushing beam

- 3D-MOT/molasses as second cooling stage
- flexible molasses configuration for systematic studies

Experimental details: Raman laser system

1.1.1

IQO-Teams
MOTIVATION
CASI

•Concept

Key elements

Status

Next steps

Future

HYPER

QUANTUS

Team

Drop tower

•Exp. Setup

·Lasers

Status &Next steps

Perspectives

FINAQS

Atlas

Conclusion

 Optical PLL of two high power diode-laser-systems (>0,5 W each → short pulses)

 Minimal phase error with ultra stable µ-wave reference (collaboration with LNM-SYRTE)

Current status

er |]- [

IQO-Teams
MOTIVATION

•Concept

CASI

- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- double interferometer in time domain
- Currently improving dominant noise sources (preparation, detection)

Ramsey-type
experiment for
evaluating frequency
dependent shifts

CASI next steps

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Rotation sensing (time domain interferometry, summer 2006)
 - $\sim (10^{-7} \text{ rad/s Hz}^{-1/2})$
- Stepwise enhancement of resolution to final sensitivity

→ signal integration

- Characterization of different measurement types & topologies
- New types/additional beam splitters for further resolution increasing

CASI future plans

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status & Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Exploring the quantum (and technical) limits
 - microgravity
- HYPER mission: ESA assessment study performed
- Technical feasibility confirmed (ESA assessment study report, ESA-SCI (2000), 10)
- Ultimate limitation: atomic temperature

Benefits of microgravity

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- ·Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

QUANTUS

versität Hannover

IQO-Teams
MOTIVATION

CASI •Concept

- •Key elements
- ·Status
- Next steps
- •Future

HYPER

QUANTUS

- Team
- Drop tower
- ·Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

Quantum Matter in Microgravity

(Quantensysteme unter Schwerelosigkeit)

Quantus

The QUANTUS Team

IQO-Teams MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- •Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status & **Next steps**
- Perspectives

FINAQS

·Atlas

Conclusion

German aerospace center

t Hannove

University of Hannover

W. Ertmer E. M. Rasel T. v. Zoest

University of Berlin

A. Peters W.Lewoczko University of Hamburg

K. Sengstock K. Bongs

A. Vogel

S. Wildfang

MPQ Munich

T. Hänsch

J. Reichel

T. Steinmetz

MPQ Munich

T. Hänsch

J. Reichel

T. Steinmetz

ZARM Bremen

H.-J. Dittus

C. Lämmerzahl

T. Könemann

W. Brinkmann

The drop tower facility Bremen

IQO-Teams
MOTIVATION
CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- 4 to 9 seconds free fall
- 110 meters height
- 3 drops per day
- 10⁻⁶ g residual acceleration

50 g deceleration at impact

Boundary conditions for droptower experiments

IQO-Teams
MOTIVATION

CASI

Concept

Key elements

Status

Next steps

Future

HYPER

QUANTUS

Team

Drop tower

•Exp. Setup

·Lasers

Status &Next steps

Perspectives

FINAQS

Atlas

Conclusion

Payload area:

173 cm height, 60 cm diameter

Maximum weight:

500 kg, thereof 234 kg for payload

Capacity of the onboard battery pack: 25 Ah

Cooling power: 2.3 kW

Remote controlled experiment

286 cm

Experimental setup I

IQO-Teams
MOTIVATION

•Concept

CASI

Key elements

Status

Next steps

Future

HYPER

QUANTUS

Team

Drop tower

•Exp. Setup

Lasers

Status &Next steps

Perspectives

FINAQS

Atlas

Conclusion

 Small and robust design for applications under microgravity/space conditions

t Hannove

- One chamber design due to space limitations
- BEC will be realized on a micro trap-Chip

LIAD with selective short wavelength (395 nm) for effective desorbing

C. Klempt, T. van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arlt; Phys Rev A **73**, 013410, (2006)

Loading procedure

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

Loading atoms into "external" MOT with bigger trapping volume (2-3 mm away from chip surface)

Transfer into "Chip-MOT", BIAS coils generate together with chip wire quadrupole-field at position of magnetic trap (300 µm away from chip surface)

After molasses cooling, atoms are transferred into magnetic trap.

Laser setup

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Robust laser design for implementation in drop capsule
- Modular design guarantees flexible setup
- Connection between modules via polarization maintaining fibers

rsität Hannover

Laser component drop test

CASI •Concept

- Key elements
- ·Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

Status & next steps

IQO-Teams MOTIVATION CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- 1,2 x 10⁷ atoms loaded into Mirror-MOT
- 1,0 x 10⁷ atoms loaded into Chip-MOT
- Currently loading magnetic trap and test of evaporation ramp
- Assembled all subsystems into the drop capsule

Next steps

- First launch in September 2006
- Analysis of first BEC under μ-gravity conditions
- Investigation of other chip structures

avenue to space experiments

Perspectives: ATV

IQO-Teams
MOTIVATION
CASI

- •Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Maiden Flight: 2007- annual flights
- BEC apparatus 25% of 1 ATV rack
- μg-quality <10⁻⁶g
- Weight < 200 kg / power << 1000
 W
- Drop tower experiment is a big step in space qualification (eventually parabolic flights)
- Flight opportunity before 2010?

FINAQS <u>Future Inertial Quantum Sensors</u>

IQO-Teams
MOTIVATION

•Concept

CASI

Key elements

Status

Next steps

Future

HYPER

QUANTUS

Team

Drop tower

•Exp. Setup

·Lasers

Status &Next steps

Perspectives

FINAQS

Atlas

Conclusion

"Harnessing atoms at their quantum limit"

EU – project

Involved Institutes:

- University of Hannover, Germany
- Humboldt-University of Berlin, Germany
- IOTA, Paris, France
- LENS, Florence, Italy
- SYRTE, Paris, France

FINAQS: scientific goals

IQO-Teams
MOTIVATION
CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Explore quantum limits of inertial sensors
- Investigate potential of atom lasers and degenerate quantum gases for use in inertial quantum sensors
- Study and development of new concepts for coherent matter wave optics
- Implement new sensors as test beds

Hannover University: (ATLAS)

design of a compact atom laser source

ATLAS

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- ·Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- •Exp. Setup
- Lasers
- Status &Next steps
- •Perspectives

FINAQS

Atlas

Conclusion

Atom laser by all-optical means

Advantages:

- Trapping of all m_F-sub-states
- Production of different species
- Fast production of BEC
- No magnetic fields

Picture: J. Nes et al., IQ, ATOMICS

Conclusion

ersität Hannover

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

- Atomic quantum sensors represent a rapidly growing field for research in general physics.
- Different complementary projects ongoing at IQ.
- Growing networks and collaborations for a full exploration of the high potential of this field.

The teams

Teams

MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- •Future

HYPER

QUANTUS

- •Team
- Drop tower
- •Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

•CASI:

T. Müller

T. Wendrich

M. Gilowski

(C. Jentsch)

SYRTE, Paris

E.M. Rasel W. E.

•ATLAS:

M. Zaiser SYRTE, Paris IOTA, Paris LENS, Florence HU, Berlin •QUANTUS:

rsität Hannover

T. van Zoest
ZARM, Bremen
HU, Berlin
University of
Hamburg
MPQ, Munich
University of
Ulm

Hyper

IQO-Teams
MOTIVATION

CASI

- Concept
- Key elements
- Status
- Next steps
- Future

HYPER

QUANTUS

- Team
- Drop tower
- ·Exp. Setup
- ·Lasers
- Status &Next steps
- Perspectives

FINAQS

Atlas

Conclusion

...performance

- 2 atomic MOTs
- Launch of 10⁹ at @ 2µK
- with 20 cm/s, $2T_{Drift} = 3 s$
- Length: 60 cm
- Ω_{SNL} =4·10⁻¹² rad/s/ $\sqrt{\text{Hz}}$
- $A_{SNL}^{=}$ 10⁻¹² g/ \sqrt{Hz}
- per shot, 0.3 Hz

ität Hannove

Fundamental Physics in Space

Fundamental Constants

Fine-structure constant

"Variable" constants

Gravitational Constant

CLOCK TESTS

Quantum

Mechanics

QUANTUM MATTER

Decoherence

Ultra-low temperatul

Special Relativity

Symmetry

Speed of light

Gravity

Gravity Mapping

Gravito-Magnetism

ATOM INTERFEROMETRY

EP-Tests