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Chapter 1
Preface

These lectures were developed from the class I taught at Reed College during fall semesters
of 2019 and 2020. Because of global circumstances this course was taught once in-person
and once completely remote. For remote teaching, I pre-recorded my lectures and all corre-
sponding demonstrations and the videos are available here:
https://youtube.com/playlist?1ist=PLv1fJStSLc1TqCZ8bJZPrgPnNk9gjy89G.


https://youtube.com/playlist?list=PLv1fJStSLclTqCZ8bJZPrgPnNk9gjy89G

Chapter 1. Preface




Chapter 2
Introduction

Why can we trust our memories? This has a lot more to do with physics than you might
think. What do we mean by “trusting memories”? We mean that our previous experiences
can be used to inform future situations. This means that what we learned in the past must be
applicable to the future; that is, there is a continuity through time of our experiences. A hot
stove you touched yesterday hurt, therefore you know that if you touch a hot stove tomorrow
it will also hurt. We can make this more physically precise by stating that experiences
exhibit a time-translation symmetry. This means that our learned experiences are always
the same (a symmetry) throughout translating or moving through time. This is obviously
extremely important for conscious beings like us, otherwise we could never learn.

Even more grand a statement that follows from this is that the laws of physics do not
change in time. Now, I don’t mean that individual objects to not change in time; I mean
that the way and rules for how objects interact with one another are always the same. For
example, the rules of Monopoly are always the same, but any given game can have different
outcomes. If the laws of physics do not change in time (they exhibit a time-translation
symmetry), there ought be a concrete quantity whose value is unchanged, or conserved, in
time. This is energy: that the laws of physics do not depend on time means that energy is
conserved, and vice-versa. This relationship between a symmetry and a conservation law is
called Noether’s theorem, after Emmy Noether, a German mathematicianE]

Noether’s theorem is perhaps the most important result in all of theoretical physics and
provides extremely strong constraints on the interactions of objects. However, depending on

the system you are studying, energy may or may not be conserved. We only believe that

'E. Noether, “Invariant Variation Problems,” Gott. Nachr. 1918, 235-257 (1918) [arXiv:physics/0503066
[physics]].
3
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energy is conserved for the entire universe, the only truly closed system we can imagine.
The energy of an object can change if work is done on that object. Work is necessarily a
concept that is outside of the object or system that you are studying. Because you can’t go
outside the universe, no work can be done on it and so energy is conserved.

However, not only do the laws of physics not depend on time, but they don’t depend
on where you are or how you are oriented. That the laws of physics are independent of
your position means that they exhibit a spatial translation symmetry. Just like with time
translations, Noether’s theorem states that there is a conserved quantity: momentum.
Momentum only changes if a force acts on your system or object. Further, the laws of
physics don’t depend on your orientation: throwing a ball to the north or to the west
exhibits the exact same phenomena. Thus we say that physics is rotationally-invariant:
everything (i.e., the laws of physics) are the same if you rotated the system. For rotations,
Noether’s theorem tells us that the corresponding conservation law is angular momentum.
Angular momentum, a measure of an object’s rotation about a fixed axis, can only change
if there is a torque on an object.

These three conservation laws, energy, momentum, and angular momentum, will be the
central components of this course. We will describe systems under which they are conserved,
and use that to our advantage when making predictions for future behavior given current
data. We will also discuss how work, forces, and torques break conservation laws for open
systems (systems that interact with an external environment). Fortunately and powerfully,
this breaking of conservation is not arbitrary, and we will construct powerful relationships
fitting it all together.

Though this class and topics are often referred to as “classical mechanics,” connoting
“classical” in the Greco-Roman sense, the physics you learn this semester underlies all phe-
nomena that we know. Conservation laws are the way that modern particle physics is
formulated, and so these ideas are used throughout my own research. Though it may seem
pedestrian or even pedantic at times, there is an amazingly rich structure lurking just be-
neath the surface. This semester, I'm thrilled to be your guide exploring Nature from this

profound perspective.

2.1 Dimensional Analysis

Physics, especially introductory courses, is a problem-solving science. You have some hy-

pothesis or question and you want to know the answer or if Nature works as you expect it to.



5 2.1. Dimensional Analysis

As a professional, card-carrying physicist, how do I know that my solution to a problem is
correct? In general, I don’t, but if other people independently check it, I gain confidence in
its veracity. However, there are numerous tricks that a physicist has in the bag that we carry
everywhere to check if a potential answer is wrong or can’t possibly be correct. Throughout
the semester, I'll let you in on the secrets of the trade and today we’ll introduce the most

powerful of all of them: dimensional analysis.

What makes dimensional analysis so powerful is noting that everything we can possibly
measure has specific units. In this course (and much of physics), we use the SI unit system
in which measured quantities are expressed in terms of the fundamental length (meter),
time (second), and mass (kilogram). Every quantity we will discuss in this class is some

combination of these basic units.

For example, let’s say that you want to determine your speed in running 100 meters.
Speed is the amount of distance you travel per unit time. We will often write speed as the

letter v and we can denote its units by writing

meters
= . 2.1
M time ( )

Given that you ran 100 meters, to determine your speed all you need to do is to divide by
the time it took to run it. If you are very fast, it might take you 10 seconds to run 100

meters. Therefore, your speed would be

100 meters
= =10 . 2.2
v 10 seconds m/s (2:2)

We can convert this into units you may be more familiar with. Let’s express m/s in

miles/hour. We do this by multiplying by “1” in particular ways. For example,

1 mile 1 meter

1
1 meter = 1 meter - -1 mile = —— - 1 mile. 2.3
meter meter mile = ;-5 - 1 mile (2.3)

I mile 1 mile
The factor 1/1609 is (approximately) the number of miles that you can cram into a meter.
This is (much!) less than 1 because a mile is longer than a meter.
What about seconds? Let’s convert 1 second into an hour:

1 hour 1 second 1
1 second =1 second1 o = Thom 1 hour = 3600 1 hour. (2.4)
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There are 3600 seconds in an hour. Now, we can convert meters/second to miles/hour as

meters 1 3600 miles
= -1 mile - =22 ) 2.
second 1609 e 1 hour hour (2.5)

So, if you ran 100 meters in 10 seconds, your speed was 10 m/s or about 22 mph.

This is an example of how dimensional analysis works. We first identify the quantity we
want to calculate; in this case, a speed. Speed has units of distance over time, so to evaluate
the speed we need to measure both a distance (say, 100 meters) and a time (say, 10 seconds).
Dimensional analysis is the trick/shortcut/tool to get an estimate of the answer simply by
ensuring that the expression has the right units (dimension). Thus, dimensional analysis is
very helpful for telling you that an answer cannot possibly be correct. If the units of an

expression are not correct then the answer cannot be correct.

Example

Let’s see how this works in an example. Say we want to determine a distance d. We are
given /measure quantities of time ¢, velocity or speed v, acceleration a (unit of m/s?), and a

mass m. Which of the following cannot be true?
(a) d=at (c) d=wv/t
(b) d = mut (d) d=1v?/a

What did you find? Note that the quantity at has units of m/s, not a distance. Also,
mut has mass in it, which is not a distance. v/t has units of m/s?, which is acceleration.
So, all of (a), (b), and (c) cannot be the expression for distance. (d) on the other hand does

have the correct units:

2 2 2
v meters seconds
= ( ) = meters. (2.6)

a seconds meters

We'll revisit dimensional analysis as an important tool throughout the semester.

2.2 Kinematics

For now, let’s get into understanding and modeling physical systems. Physics is the study
of how and why objects in the natural world change in time. We’ll start this topic, of how

to model objects changing, small and expand our purview in the course of the semester.
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2.2.1 Displacement

So what’s the simplest way that an object can change in time? I'm exhibiting it right now:
an object can keep its shape and substance the same and just move through space. We live in
a universe with three spatial dimensions, so ultimately we need to know how to understand
motion in many dimensions. With our principle of starting small, let’s ignore two of the
dimensions; that is, we are just considering motion along a line. For many systems, this is
very reasonable. For example, a train moves in one direction along linear tracks, so we can
(often) ignore lateral motion to the tracks or motion up and down. One-dimensional motion
is what I am doing at the front of class: just pacing back and forth.

If we want to be quantitative and model my motion as a function of time, there are a
few things we need to address. First, how do we measure this motion? We already agreed
that we use SI units so we measure the distance I travel in meters and the time over which
I travel in seconds.

The next thing we need to do is to determine when to start the time and from where to
measure distances. In a race, both of these things are unambiguous: the clock starts with
the gun, and distances are measured from the starting line. For my pacing, it’s less clear
when to do either. This is not an accident: in the natural world, there is no “preferred”
initial time or position. We have to impose both to be able to meaningfully speak about
some physical process.

With that in mind, let’s attempt to model my pacing from one side of the well to the
other, and back. We will start the clock when I leave one side and also measure distance
from where I start. With this agreement, we can draw a graph of my position in the well as

a function of time:

d (meters)
A

10m +

Sm <+

Here, I have assumed that the well is 10 meters across and it takes me 20 seconds to walk

out and return. This plot shows that as I just set out I am getting farther from the origin;
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my distance is increasing. At 10 seconds, the increasing switches to decreasing distance,

meaning [ am getting closer to the origin as time increases; I have turned around.

Note also that I have represented distances with positive numbers (e.g., 5 meters). It
is easy to represent the direction of my relationship to the origin: just use positive or
negative numbers. Distances that account for relative relationships of location to an origin
are displacements. We'll agree that positive displacements are to your right, while negative

displacements are to the left of the origin.

Example

With that in mind, I have another question! Consider again my walk across and back in the
well. Three graphs of my motion are shown below. Can you determine where the spatial

origin is for each?

d (meters)
A
5m <+
(a)
t > ¢ (sec)
98 10s 15s 20s
_5m-
d (meters)
A
t . t > ¢ (sec)
oS 0s 15s 20s
(b)
—5dm T

—10m-
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d (meters)
4

15m +

10m +

5m -

5s 10s 15s 265

For (a), I have moved the origin to the center of the well. I start to the left of center (origin),
move past it, then turn around. For (b), the origin is now at the opposite wall, and I only
get to position 0 at my turning point. For (c¢), I've moved the origin 5 meters to the left of

where I start walking! I guess it would be near the Blue Bridge.

We’re about done with this, but I want to emphasize something extremely important.
I've drawn four different graphs to represent me walking from one side of the room to the
other. What I did was identical, we just represented it in several ways. Our particular way
to describe the natural world is arbitrary and irrelevant; it does not affect what is actually
happening. This is important to remember: drawing figures and graphs is very powerful for
gaining understanding, but we have to remember that the drawing represents Nature, and

not vice-versa.

2.2.2 Velocity

The story that the original graph tells is that I walked away from the origin for 10 seconds
traveling 10 m and then returned to the origin, which took another 10 seconds. Not only
does this graph tell the story of my position as a function of time, but it also tells the story
of the change in my position as a function of time. That is, from one moment in time to
the next, this graph encodes the rate at which my position changed. Whenevery you use the
word “rate”, you should think “slope”, so we can identify the slope at any point in the time

to study the rate of change of position.

For a function d(t), the displacement as a function of time, the slope between two points
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at time t + At and ¢ is

d(t + At) — d(t)
At '

(2.7)

slope =

Strictly speaking, a slope only makes sense for a line; however, we can imagine taking At as
small as possible to determine the slope from two neighboring times, infinitesimally close to
one another. This limiting procedure produces a derivative

dit+At)—d(t) _d

i, T = 0, 29

We call the time derivative of displacement the velocity v(¢), which is the instantaneous

change in displacement.

For the position versus time graph we're studying, we can produce the velocity versus

time graph straightaway. In the first 10 seconds, I traveled 10 meters, so the velocity is

10 m
10 s

v(t <10s) = =1m/s. (2.9)

In the next 10 seconds, I traveled —10 meters (I went left instead of right), so the velocity is

—10
V(10s<t<208) = —— 2 = _1ms. (2.10)
10 s
The velocity versus time graph is thus
v (meters/second)
A

1m/S ]
+ :I + 1 (sec)
s 10s 15s 20s

—1lm/s+ I
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2.2.3 Acceleration

Why stop at velocity? We can also study the rate of change of velocity, called the acceler-

ation a(t),

a(t) = %v(t) = % d(t). (2.11)

As acceleration is the time derivative of velocity, which is itself the derivative of displacement,

acceleration is the second time derivative of displacement.

Example

Can we determine the acceleration versus time graph for my path? Below are three possible

plots. Which one do you think is correct, based on the velocity versus time graph?

a (meters/second?)
A

5s 10s 155 20s

a (meters/second?)
A

» t (sec)

O+

5s 15s 20s
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a (meters/second”)
A

5s 10s 15s 20s

I've left off labels/ticks on the ordinate (y-axis). Note that for ¢ < 10 s, the velocity is
constant; it does not change in time. Therefore, a(t < 10s) = 0. Further, for ¢ > 10s,
the velocity is also constant, though perhaps a different value than the velocity before 10 s.
Nevertheless, the acceleration is the instantaneous change in velocity and so too is a(10 s <
t < 20s) = 0. Around 10 s, however, something interesting happens: my velocity rather
rapidly changes from positive to negative. Thus, around the instant of 10 s, I experience
a large negative acceleration. Why negative? Because my velocity just after 10 seconds

is smaller than my velocity just before. These considerations imply that (b) is the correct

graph.
So, we can describe motion in different capacities by taking more derivatives
d3
dt3
d d d
displacement — velocity — acceleration » jerk >
d2 d2
dt? dat?

etc. In future chapters, we will make this more precise, but it’s good to think about it now.
Here’s a question: can you “feel” velocity or acceleration? Imagine that you are on a train
traveling at constant speed on very smooth rails. If you never looked out the window, could
you tell that you were actually moving at all? Now, instead imagine that the conductor
slammed on the brakes, violently changing the velocity of the train. Without looking out a
window, could you tell that the train was stopping?

This exercise manifests a few things. First, this is referred to as a gedankenexperiment

or thought experiment in German. Thought experiments, in which we use our experience
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to test our physical intuition, is an extremely powerful tool for making sense of Nature.
Second, the fact that you apparently could not tell that the train was moving at a constant
velocity but could tell that it was accelerating suggests a symmetry of Nature. We could all
be traveling at a constant rate, and there is no experiment we could do to determine if it
were so. By Noether’s theorem, this constant velocity or “boost” symmetry suggests there
is a conservation law. What do you think this might be? Why we feel accelerations and not

velocities is encapsulated in Newton’s laws, which we will discuss in coming chapters.

For now, let’s just study a system which undergoes constant acceleration (note that 0 is
also a constant). Let’s call this constant a, which is some number. As acceleration is the
rate of change in time of the rate of change in time of displacement, the dimensions/units of
a are meters per second per second (m/s?). As acceleration is the rate of change of velocity

and is constant, velocity must be linear in time. In general, we can then write
v(t) = at + vy, (2.12)

where vy = v(t = 0). Note that this expression is only true for constant acceleration a.

What is the displacement with constant velocity? We have the relationship

u(t) = %d(t) , (2.13)

for displacement d(t). To solve for d(t), we need to “undo” the derivative, or anti-differentiate.
By the Fundamental Theorem of Calculus, the anti-derivative is just the integral. So, given

velocity v(t), we just integrate to find d(t), where
L s
d(t) = §at + vt + dp , (2.14)

where dy = d(t = 0). Let’s now differentiate to see if this makes sense. Recall that the

derivative of a power is

d 1
—t" =nt"" 2.15
dt S (2.15)
for some n. Then,
d 2
%d(t) = éat—l—vo—i—O-do =at+vy=v(t), (2.16)

as expected.
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For the rest of this section, we are going to use these results to measure the height of
the ceiling of this lecture hall. What we will do is the following. We will throw a ball up
to the ceiling, just to the point of touching the ceiling. Because the ball has an initial,
non-zero velocity, and stops moving at some point, the ball is accelerating. This acceleration
is due to the gravitational pull of the Earth on the ball and near the surface of the Earth is

approximately constant with the value
a;=9=98m/s. (2.17)

Note that as the ball moves up, its velocity decreases, therefore it experiences negative

acceleration. Then, the displacement of the ball from the floor can be expressed as
9,

where hg is the initial height of your hand right when you throw the ball. To know the
ceiling height, we apparently need to know the time ¢ at which the ball touches the ceiling.
What else happens at that time? The ball’s velocity immediately before was moving upward
(positive) while immediately after is moving downward (negative). So what must the velocity

be at the moment it touches the ceiling, its highest point? Zero!

With the expression for velocity,
v(t) = —gt + v, (2.19)
we know that at time ¢ = Tijing, the velocity is 0:
V(t = Teeiting) = 0 = —gTceiting + V0, (2.20)
or, solving for initial velocity vy, we find
Vg = 9T ceiling - (2.21)

Now, the height at ¢ = Tieing of the ball is just the ceiling height, so we can express the
ceiling height as

1 1
hceiling = h(t = Tceiling) = _§ch2eiling + gTCQeiling + hO = §ch26ﬂing + hO . (222>
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So all we need to measure the ceiling height is to measure the time it takes for the ball to

reach the ceiling, Tieiling-

2.3 Order-of-Magnitude Estimation

We will now move on to introduce another extremely powerful tool in a physicist’s toolkit:
order-of-magnitude estimation. Along with dimensional analysis, order-of-magnitude
estimation can produce profound physical insights from very simple considerations. Many
very famous physics papers are in essence nothing more than dimensional analysis and esti-
mation.

This order-of-magnitude estimation, like dimensional analysis, is not designed to produce
exact results, but rather informs you of an answer within a factor of 10 or so. This might
seem like it’s not very useful as a factor of 10 can be a lot, but this can be very helpful for
determining if your answer is reasonable and expected. Especially in homework problems,
with significant amounts of algebra, first knowing the ballpark of what the solution should
be is extremely insightful.

Additionally, order-of-magnitude estimation can be used to determine surprising results
that may initially seem ill-defined or even impossible to solve. As such, they are often called
“Fermi Problems”, from Enrico Fermi, a mid-20th century physicist who mastered the art of
estimation. Fermi was a scientist on the Manhattan Project and witnessed the first atomic
bomb at the Trinity site. Though he and the other viewers were a few miles away from the
blast, wind from the shockwave reached the viewers. Fermi tore up a piece of paper and
dropped it, in doing so estimating the wind’s speed. From the wind speed and the distance
from the blast site, Fermi was able to estimate the yield of the bomb; that is, the total
energy that it released. Though his estimation procedure was crude, he was within a factor
of 2 of the correct result for the yield.

Another such problem attributed to Fermi was his question of how many piano tuners
are there in Chicago? Fermi was a professor at the University of Chicago and a piano player,
so this was a relevant problem. However, on its surface, it seems wildly ill-defined. The key
to this order-of-magnitude estimation is that we be systematic and reasonable with all of
our guesses. If we want to determine the number of piano tuners, we need to determine the
number of pianos, and the number of people who might own those pianos. So, let’s do this
estimate.

Chicago has about 10 million people in the metropolitan area. If a house has a piano, it
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most likely only has a single piano. How many houses are there in Chicago? Probably there
are 2 people on average in a house, so there are about 5 million houses. It is definitely too
much to say that every house has a piano and too little for every 1000th house, but perhaps
we could believe one piano per square block. That’s about 1 piano per 10 or so houses. With
5 million houses and one piano per block, that’s about 500,000 pianos. A piano is tuned how
often? Every day is way too often and every 10 years is much too infrequently. If you play
piano regularly, you would probably want it tuned once a year. So we need 500,000 pianos
tuned once a year. How many piano tuners are needed to do this work? Well how long
does it take to tune a piano? Definitely more than 1 minute, but less than a full workday
otherwise business would be slow. So perhaps it takes an hour to tune a piano. One tuner
could tune 8 pianos in a work day or 40 in one work week. Working 50 weeks a year, a tuner
could tune 2000 pianos. If one tuner can tune 2000 pianos in a year, then 250 piano tuners
could tune all 500,000 pianos in Chicago. Thus we estimate that Chicago has 250 piano
tuners. In 2009, Chicago had 290 piano tuners. We are amazingly close!

While this is somewhat of a silly exercise but nevertheless exhibits the power of this
tool, order-of-magnitude estimation is extremely powerful for the informed citizen. These
techniques can be used to determine if a claim in the news is believable or, pardon me,
bullshit. A couple of years ago, two professors at the University of Washington created a
course titled “Calling Bullshit” as an exploration of tools often used in science but applied
to all sorts of problems, questions, and claims. That course was further developed into a
book and more information can be found at their website, https://callingbullshit.org.

Let’s apply this estimation technique to some physics problems you may encounter. As
with dimensional analysis, this can be extremely powerful for checking if your answer makes

sense at all.

Example

So here’s our question: what is the farthest possible distance that a human can hit a golf ball
on Earth? This problem satisfies the first requirement: it is relatively ill-defined. However,
by breaking it apart we can make progress and come to a solution. Let’s first consider the
relevant quantities we need. A golf ball is a projectile and the time that is can be in the air
depends on the acceleration due to gravity, g. If g is larger, then there is greater acceleration
and the ball is in the air for less time (and conversely). This also suggests that if we know
the time-of-flight, we can estimate the distance. What’s a reasonable time-of-flight? I'm not

sure, but let’s do some guesses to see what makes sense.


https://callingbullshit.org
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Is a time-of-flight of one second reasonable? That seems too short. For order-of-
magnitude estimations, we would next guess 10 second time-of-flight. That does seem okay;,
but just to make sure, let’s consider multiplying by another factor of 10. Is a 100 second
time-of-flight reasonable? A full minute and a half? That seems exceptionally long (If you
don’t think so, then tonight sit quietly staring at the wall for 100 seconds!). So, we’ll estimate
a time-of-flight of 10 seconds.

Now, given g = 10 m/ s® and t = 10 s, how do we make that a distance using dimensional
analysis? Well, the units of d = gt?> are a distance in meters. So we estimate, dpax ~
10 - 10> m = 1000 m. According to the internet, the longest drive was about 500 yards, or

about 500 m. So we are within a factor of 2 with simple guesses!

Example, Redux

Let’s attack this problem in a different way. g is always a relevant quantity, but let’s instead
use the initial ball speed vy to estimate the longest drive. With vy having dimensions of
meters/second, the quantity d = v2/g has units of length (meters). So, we just need to
estimate vy and we can estimate d.

Let’s see what makes sense. We’ll think about speeds vy in miles per hour as that is likely
what most of you are more familiar with. At the end, we’ll convert to meters/second to get
our result. Does vg = 1 mph make sense? No, this is a slow walking pace. What about 10
mph? Still too slow; this is a brisk jogging pace, but golf balls can go much faster. What
about 100 mph? This seems reasonable; the fastest thrown baseballs in the Major Leagues
are 100 mph. To see if this makes sense, let’s check vg = 1000 mph. This is the speed of
a fighter jet and is significantly above the speed of sound! Do golf balls break the sound
barrier? Eh, no, there aren’t sonic booms at the British Open. So 100 mph it is.

Dividing 100 mph by that factor of 2.2 corresponds to about 40 m/s. With this estimate
for the golf ball speed, the estimate of the distance traveled is

Anax = U—g ~ 1600 m~ 160 m. (2.23)

g 10
This is about a factor of 3 smaller than the longest drive. Again, reasonable within an order
of magnitude, and with a better approximation for vy, we can get a better estimate for dy,y.

By the way, the longest golf ball drive ever wasn’t on Earth at all. Alan Shepard, an
astronaut on Apollo 14, hit three golf balls on the Moon, believe to be the longest drives

ever. Can we make sense of this from our calculations above? As we will discuss later in this
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course, the acceleration due to gravity on the Moon is less than that on Earth, both due to
the facts that the Moon is smaller than Earth and because it is less dense. Anyway, we have
JEarth > GMoon- A golfer on the Moon would swing a club with the same (or approximately
the same) velocity as on Earth, as that is determined by the golfer’s fitness. So, we expect
the speed vy of the ball to be the same on Earth as on the Moon. Then, the distance that
said golfer would hit the ball on the Moon is

v v

> .
GMoon JEarth

Arjoon & (2.24)

In fact, groon & gEartn/6, so the golfer could hit the ball about 6 times farther on the Moon
than on Earth!



Chapter 3
Vectors

We've discussed in some detail kinematics and motion in one dimension, but this will only
get us so far in understanding the phenomena of our universe. In particular, to some approx-
imation, motion of a system may be able to be modeled as one-dimensional, but our universe
is three-dimensional so we can do much more than just move along a line. So, our task now
is to introduce the language used to describe objects and systems in multiple dimensions.

Our fundamental object for doing so will be a vector.

3.1 Representation of Vectors

Simply, a vector is a quantity that has a magnitude and a definite direction in space. A
magnitude is a non-negative number that specifies the length of the vector. The direction of
a vector is simply how the vector points with respect to a specified origin. For example, we

might draw the vector U as:

The length of the arrow is the vector ©’s magnitude, denoted as |v]. The head of the arrow
tells us what direction the vector points, with respect to the origin which, by convention, is
located at the tail of the arrow.

We’ve already seen vectors in this course before, but not really in that language. In the

previous chapter, we had modeled my strolling across the well. We had defined one point
19
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in the well to be the origin, and my displacement from that origin could be plotted as a
function of time. This displacement dis a vector; it has a magnitude and direction. The
magnitude |cﬂ is the distance from the origin; that is, the number of meters, say, that a
measuring device (stick, tape, etc.) would read extended from me to the origin. We had also
discussed a direction: displacement is positive to the right and negative to the left. In this
way a displacement d of d = —5 m means or can be read as “five meters to the left of the
origin.”

Vectors require a well-orderedness to be well-defined and unambiguous. In the example
just discussed, this essentially follows from the well-orderedness of the real numbers. A
negative real number means left of the origin (0) while a positive real number means to the
right.

Enough about one dimension, though. Our universe has three spatial dimensions: left-
right, up-down, forward-back. What we mean by a “dimension” can be understood prac-
tically and just the number of ways that one can travel through space. Mathematically, a
dimension is an independent direction in space. That is, one can move left or right com-
pletely independently of up and down. One can move left, say, without ever changing the
relative value of “up-ness”.

Three dimensions is hard to draw, so let’s just work in two dimensions which will essen-
tially illustrate all of the subtleties of multiple dimensions. This paper is two-dimensional:
one can move left-right or up-down on it. This can be done completely independently. For

example, the line

only lives in the left-right dimension. By contrast, the line

only exists in the up-down dimension. These two dimensions/lines are independent in the

sense of the following. For the left-right line, we can move along the line, changing our
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left-right location, but without changing the up-down location at all. The following line

exists in both the left-right and up-down dimensions. Traveling along it changes both the
left-right and up-down positions.
How can we represent these features? As always, we first need to pick an origin; a point

from which everything is measured. We’ll denote it by a dot

Y A

B >

From this dot, we then need to denote our two dimensions. We can do this by drawing axes,
both left-right and up-down. The left-right axis is called the abscissa and the up-down axis
is the ordinate, but we often colloquially just say “z-axis” and “y-axis”, respectively. Now,
we can represent any point on the paper by its left-right coordinate (“z-component”) and
up-down coordinate (“y-component”). For example, a point with z =5 m and y = —2 m

would be somewhere like so

Y
A
2m +
2m 4m 6m 8m
} } } } > T
—2m+ [ )
\—(5m, —2m)
_Am+

We can also express this point as an ordered pair of numbers (g, yo), which are the z- and

y-coordinates of the point with respect to the origin, respectively.
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This picture is very powerful. We can immediately determine the distance of this point

from the origin. For the example given, we can draw the triangle:

Y

A
2m +

2m 4m 6m 8m

e } >

—2m+ \"6
\—(5m,—2m)

—4m+

This triangle has sides of length 5 m and 2 m that meet at a right angle. Therefore, the
distance to the origin, d, the hypotenuse of the triangle, is simply the application of the

Pythagorean theorem:

d=+52+22=125+4=+729. (3.1)

Now, if this point represented my location traveling in the well, we can define an arrow that

points from the origin to my position; my displacement vector d. We can draw this as

Y

A
2m T

2m 4m 6m 8m
} } } } > T
—2m T d
—4m +
This vector can be expressed as
d=(m,—2m)=(5i—2)) m. (3.2)

Here, 72 and j are called unit vectors and simply represent the direction of the axes in our

drawings.

Example

The power of good notation is that it immediately enables an extension of what we’ve
developed here. For example, given my initial position of d = (5 m, —2 m), what is my

position vector after walking in the y-direction 10 m? The possible answers are:
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— —

(a) dpew = (15 m, —2 m) (¢) dyew = (5 m, —2 m)

(b) dyew = (5 m,8 m) (d) dyew = (5 m, 10 m)
To solve this problem, we can use vector addition, which exploits the independence of
the dimensions. My initial vector is d = (5 m, —2 m), as measured from the origin. Now,

from this point, I move 10 m in the y-direction. That is, if I consider my current location as

the origin, then my displacement from this point Ad is
Ad = (0,10 m). (3.3)

Now, here’s the beauty of all of this. To find my displacement ci;lew from the “true” origin,
all T have to do is all d to Ad:

-

dew =d+Ad=(54+0m,—2+10m) = (5m,8 m). (3.4)

Note that addition proceeds component-wise. This addition has a lovely picture, too. First,
my current displacement is measured from the origin. Next, I consider my current position
the origin, and then displace Ad from it. That is, we draw the vector Ad starting from the
head of d

Sm A
6m A
4m A

2m A

—2m ¥+ cf

—4m +

Finally, the total displacement J;lew is the vector formed from connecting the “true” origin
to the end of Ad. This “head-to-tail” visual vector addition is extremely powerful and we’ll

exploit it throughout the course. By the way, the magnitude of my new displacement is

|dnew| = V52 + 82 = /25 + 64 = /89 . (3.5)
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Sorry, these aren’t nice numbers!

A few things to note: independent dimensions represent distinct orthogonal /perpendicular/right
directions in which one can travel in space. Our first step in basically every physics problem
we will encounter is to identify the origin and set up orthogonal axes, as physics in the
different dimensions will largely be independent of one another.

This notation also allows us to express lines or general curves in two dimensional space.

For example, the equation for a line is the standard
y=mx+b. (3.6)
A generic point p on the line with - and y-coordinates p = (x,y) can be expressed as
p=(z,mz+Db). (3.7)

That is, given a point z, the point y is uniquely determined by the equation for a line.
Further, the line is one-dimensional; you only need to specify a single point (z) to know
both coordinates.

This can be extended to any curve. For example, a parabola can be expressed as
y = ax® +br +c, (3.8)

for some real numbers a, b, c. Does this parabola represent a one-dimensional object? Why
or why not? Can you construct curves for which every point in two-dimensional space lives

somewhere on the curve?

3.2 Projectile Motion

Using this new language, we will first study the physics of projectile motion. A projectile
is an object that flies freely, only influenced by the effects of gravity. More colloquially,
a projectile can be a thrown baseball, a golf ball, the Vomit Comet airplane, or a whale
that has unfortunately materialized high in the atmosphere. We start studying projectiles
because the physics it manifests is quite simple. As we discussed previously, a dimension is
defined as an independent direction in space. This property of independence implies that for
studying physics in multiple dimensions, we can consider the properties and physics of each

dimension separately and then combine the analysis at the end. Projectile motion exhibits
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sufficiently interesting, yet simple, phenomena in each dimension, which is why it is a good
place to start.

First, let’s motivate the physics of projectiles. We’ll be studying physics applicable to our
everyday, human-sized experience. On this scale, the surface of the Earth is, to very, very
good approximation, flat. This direction along the ground will be one of our dimensions.
The other dimension we consider is vertical: projectiles (like a baseball) travel both along
the ground direction and up (and down) through the air. So, the two dimensions that we
study can nicely be drawn on a page or blackboard. For example, the trajectory of a ball
that we throw across the softball field might look like

Y A

T

Here, z is the distance along the ground and y is the height of the ball and you throw it to
the right from the origin.

Let’s identify the physics in each of these dimensions. First, the vertical dimension.
Again, I want to emphasize that because vertical and horizontal are independent dimensions,
we can analyze them separately. From our everyday experience, gravity acts exclusively in
the vertical direction. To good approximation (so far, anyway), gravity enacts a constant
acceleration of g (=~ 10 m/s?) toward the ground. We had already introduced the formula for
position as a function of time for an object undergoing constant acceleration of magnitude

g, the height y as a function of time is
t) = ——gt2 + t+ 3.9
y( ) 2 on y07 ( N )

where v, and y, are the initial vertical velocity and height, respectively. Here, “initial”
means at time ¢ = 0. Note that I am careful to denote the velocity as the initial y-component
of velocity, vy, as that is all that is relevant for the formula for height.

For horizontal motion, we want a corresponding formula for z(t). Is there any acceleration
horizontally? That is, if I drop a ball, does it spontaneously accelerate along the direction

of the ground? Nope, or at least I don’t think so! So, if there is no acceleration (a = 0) in
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the z-direction, the expression for the horizontal position as a function of time is simple:
z(t) = vosl + 2o, (3.10)

where vg, is the initial (time ¢t = 0) velocity in the z-direction. So, we have the two equations

for horizontal and vertical position:

2(t) = vost + o, y(t) = _gﬁ + oyt + Yo - (3.11)

For the initial velocities vy, and vy, note that these are simply the z- and y-components of

the two-dimensional initial velocity vector #jy. This can be expressed and illustrated as

Vy A

ey

170 = oni + onj = (Uoz, on) . (312)
on

>

Uy

v

w 0
Vog
This vector can equivalently be expressed in terms of the magnitude of 7y, vy, and the angle
6 above the horizontal as
Vg = Vg COS B, Voy = Vo sin . (3.13)
That is, our system of equations reads
x(t) = vgcosft + xq, y(t) = —gt2+vo sinft+ 1y . (3.14)

By taking derivatives, we can find velocities and accelerations in these two dimensions.

Again, I want to emphasize a consequence of the independence of the horizontal and
vertical dimensions. Every object, regardless of its velocity vector initially, accelerates with
g by gravity (ignoring air resistance). This result prompted a famous example of astronaut
on the Moon (where there is no air resistance) to demonstrate that a feather and a hammer

would hit the Moon’s surface at the same time when dropped from the same height.
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Example

This also segues into an example we’ll study for much of the rest of this section. Here’s the
setup. A monkey is hanging from a branch a distance [ from you horizontally and a height
h above you. The monkey has a very loudly growling stomach so you think you can give it
one of your bananas. This is a very smart (and hungry!) monkey so it doesn’t like things
thrown at it. In defense, the monkey releases its grip on the branch at the exact moment
that anyone throws something at it. To ensure that the banana hits the monkey, where

should you aim when you throw it?

(a) Above the monkey’s original location (c) Below the monkey’s original location

(b) At the monkey’s original location

To answer this question, let’s first draw a picture:

\ v
<

(banana for scale) l

v

Let’s next write down the kinematic equations for the banana. With you located at the

spatial origin and throwing the banana at time ¢ = 0, the trajectory of the banana is
xp(t) = vgcosOt, yp(t) = —gt2 +vpsinft. (3.15)

We assume that you throw the banana with speed vy at an angle # above horizontal. Now,
the monkey just drops itself from the branch at time ¢ = 0, so its horizontal position is

constant in time: x,,(t) = [. Its height, on the other hand, is

Ym(t) = —th +h, (3.16)

noting that the monkey’s initial velocity is 0: it drops from rest.
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Now, if the banana hits the monkey at some time 7', this means that the horizontal and
vertical components of the positions of the monkey and banana are identical. For horizontal

positions, this enforces that

l
vgcos

2p(T) = 2 (T) = vgcos 0T =1, = T = (3.17)

Now, plugging this into the equations for the heights of the monkey and banana and setting

them equal, we have

) 2
g( 1 . l g(_¢

T =y, (T) = -2 0 ~ 9 ho (318

yb( ) Y ( ) 2 (’U()COSQ) +U081n vosine 2 (UOCOSG) * ( )

Massaging this expression we find that the terms proportional to g cancel each other. The
way to interpret this is that the banana and the monkey “fall” for the exact same distance.

Canceling these terms, we find that the banana hits the monkey if

Vol sin @
p— h .].
Vo cos 0 ’ (3.19)
or that
h
tanf = 7 (3.20)

Remember, 6 is the angle above the horizontal of the initial velocity. tan @ is the ratio of the
height to the length of a right triangle and h/l is exactly the ratio of the height and length

of the triangle formed from you, the monkey and the ground:

je

That is, you should aim right at the monkey!
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Just our luck, we can test this out today! Before we do, I want to tell you a couple of
quick stories. First there’s the adage that if it wiggles, it’s biology. If it stinks, it’s chemistry.
If it’s dirty, it’s geology. And if it doesn’t work, it’s physics!

Also, I'm a theoretical particle physicist, which means that I stay far away from exper-
iment. There’s a phenomena called the “Pauli effect” named after the theorist Wolfgang
Pauli, who is perhaps most famous for the Pauli exclusion principle. Pauli was notorious for
destroying any and all experimental apparatuses he came in contact with. A statement of
the Pauli effect is that Pauli and a working experiment can not be found in the same room.
Apparently, this effect was extremely strong. Once an experiment in Goettingen, Germany,
failed for some unknown reason, completely randomly. The experimentalists were baffled,
until they learned that at almost the exact time of the failure, Pauli was changing trains
in . . . Goettingen!

Hopefully I have better luck than Pauli! (See https://youtu.be/m54v6gfDWNS)

3.2.1 The Range Formula

Finally, I want to present an estimate and plausibility for the range formula. That is,
given level ground and an initial velocity vy an angle 6 above the horizontal, how far does a

projectile travel? The picture is

Y A

range

The range is a distance, so we can use dimensional analysis to determine its dependence on
the given quantities.
The only dimensionful quantities in the problem are the initial speed vy and acceleration

g. The range r is formed by some product of these quantities raised to powers a and b:
r=v5g". (3.21)

We can determine a and b by matching units. The units of r are meters m and the units of


https://youtu.be/m54v6gfDWN8
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vig® are

b

p_ M°m b —a—2b
[v5g°] = e m®*tose (3.22)
If this is to reduce to just meters, we know that the second units must be eliminated, or that
—a — 2b = 0. Further, a single distance unit means that a + b = 1. These two equations can

be solved by first adding them together:
(—a—2b)+ (a+b)=-b=0+1=1, (3.23)

or that b = —1. It then follows that a = 2. That is, the range is proportional to

02
roc 2. (3.24)
g
What about dependence on the angle #7 Well, we would have to solve and reorganize
the kinematic equations, but we can note two limits. First, if # = 0°, the projectile is shot
parallel to the ground from the ground, so has 0 range. Also, if § = 90°, the projectile travels
straight up vertically and lands where it started. Again, this is 0 range. These considerations
suggest that r is proportional to
2 sin (20
o L50(26) (3.25)
g
When 6 = 0°, sin0° = 0 and when 6 = 90°, sin(2 - 90°) = sin 180° = 0. We need a bit more
work to justify it, but the range formula is actually just this:
vg sin(26)

r= —g ) (3.26)

3.3 Relative Velocity

One of my favorite pastimes as a kid on long car trips was staring at the other cars on the
road and watching them pass by. It’s a mesmerizing thing: your car could be traveling 70
miles per hour with respect to the ground, but the car next to you could appear to be at rest.
Or, if your parent(s) had a particularly heavy lead foot, the cars next to you could appear
to be traveling backward, even though everyone was moving forward. Looking across the

road, to oncoming traffic, they would zip by at huge speeds, much faster, it would appear,
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than we were traveling individually. How do we make sense of these relative velocities and

speeds? We can exploit vectors and their formalism to study the problem.

Let’s analyze this problem, starting in one dimension. I’'m imagining that I'm in the back
seat of my parents’ car, on the long drive to my grandparents’ house. While driving through
the deserts of the western US, there’s a lot of time to think about physics, so I'm wondering
how fast the cars in the other lanes appear out my window. Let’s say that the velocity of
my car is ¥, while the velocity of the truck with Florida plates is ;.. Hold on a second;
we have a bit more to define. Just as we needed to specify an origin from which to measure
distances when I walked across the well, we need to define with respect to what we measure

velocities.

Velocity is defined as a difference of displacement over change in time:

-

7(t) = 2 d(t), (3.27)

d
dt
so velocity is independent of the spatial origin we choose. A different spatial origin just

corresponds to some displacement of our position by some constant vector J{):
d(t) — d(t) + dy . (3.28)

Because dj is independent of time, velocity is unaffected:

d /- - d -
(1) = = (dlt) + dy) = - dit) = (1), 3.29
(t) - = (dle) + dy) = Zdio) = ) (329)

However, we had previously done the gedankenexperiment in which we considered sitting in

a very smooth train traveling at a constant velocity. Recall that we couldn’t tell if the train

was actually moving, if our eyes were closed or if we weren’t looking out the window.

An interpretation of this is that there is nothing special about a particular absolute
constant velocity. All that matters are relative velocities. So, whenever we talk about a
velocity, we need to specify with respect to what. Those objects that have 0 velocity with

respect to one another are said to define a frame of reference, or simply just frame.

So, when we say that we have velocity v,., we need to define the frame in which this
velocity is defined. Typically, it’s the velocity with respect to the Earth, so for analyzing

the problem at hand, we denote our velocity and the velocity of the truck from the frame of
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the Earth as

— Earth —~ Earth
Unme » Ytruck (330>

Using these quantities, can we determine the velocity of the truck I would see out my window?

me 9

That is, what is the velocity of the truck in my reference frame, v,}2¢, 7

Let’s draw some vectors to express this setup:

—Earth
Ume
>
>
—HEarth
truck

From these, we want to determine ¥, c,. Let’s think about how we get into my reference
frame. Imagine that you're just standing on a curb and a car drives by to your right (another
gedankenexperiment!). That is, in your frame, the car drives right. Another way to imagine
that the car moves to the right is not that you are at rest (with respect to the Earth), but
that the car is at rest and you are moving to the left! That is, to move from one frame to
another, you need to subtract the relative velocity of the two frames.

That is, 72 = 0 as I am at rest by definition in my frame. To determine the velocity
of the truck in my frame, I just subtract my velocity with respect to Earth from the truck’s
velocity to the Earth:

—me __ -~ Earth — Barth
Utruck = Vtruck — Vme ) (331)
or, in arrow notation:
—Earth
< » ~ P “Ume
g oe —Earth —Earth
truck truck VUme

[ [

—Earth —truck
Utruck Ve

I can always determine another relative velocity from two velocities in a single frame:

—frame 2 __ —frame 1 — frame 1
vobj — Yobj ~ Urame 2 - (332>

This is true as a vector equation, so it is the rule for relating two frames in any number of

dimensions.
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Example

Using this formalism, let’s analyze the following system. Imagine that you are sitting in
the backseat of a convertible, with the top down (wayfarers on...), traveling at a constant
velocity with respect to the Earth. You throw a ball vertically in the car’s frame. What
happens? Does the ball:

(a) Land behind you (b) Land in front of you (¢) Land right on you

A picture of this is:

N

o ball

'&‘W

car
Let’s analyze this systematically. We are given the following:

gEarth — )l (3.33)

car

where vg, is the car’s speed and we assume that it is moving along the z-axis. Also, the

ball’s velocity in the frame of the car is

Upal = (=gt + Vban)J - (3.34)
Recall, in the car’s frame, the ball travels vertically, in the y-direction. The ball’s initial
speed in this frame is vy, and it, of course, undergoes acceleration —¢g due to gravity.
Now, what is the velocity of the ball with respect to the Earth? From our master relative
velocity formula, we have

— Earth __ —car — car
Upall = Uball — VRarth - (3.35)

;7 car

. . . . — Earth . .
This is a bit weird, as we know 0", but need vj.r,. No fear, these are simply opposites

of one another
—car __ — Earth
VEarth — ~Vcar . (336)

(Can you convince yourself of this?) Therefore, the velocity of the ball with respect to the
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Earth is

— Earth __ —car —car __ -—car — BEarth __ A A
Upall = Upall — Ukareh = Upall + Uoar = Veard + (=gt + Upan)J - (3.37)

Now, we need to determine the position of the ball after it has traveled up and come
down to the vertical location of the car. To determine the displacement of the ball with

respect to the Earth, we simply integrate its velocity:
TEar A g R
bE?l th<t) = (Veart) T + <_§t2 + Uballt> J- (3.38)

I have set the initial position at ¢ = 0 to be the 0 vector. The ball starts going up at t =0

and comes back to vertical displacement of 0 when

_th + Upant = 0, (339)
or when
20pa
L, (3.40)
9

What is the ball’s z-position at this time? We simply plug in ¢t = T}, to find

2UpanVear
Thall(Ty=0) = VearTy=0 = % : (3.41)

What is the car’s z-position at this time? It’s identical because, by the vector nature of

velocity, the car and the ball have the same xz-component of velocity. That is,

2UbanVcar
) = e (3.42)

Tcar (Ty g

That is, because both the x- and y-components of the position of the ball and the car are

identical at T}, the ball lands in my lap!

Also, what shape would you see as the trajectory of the ball (you being at rest with the

Earth)? Note the ball’s z-component of position is

xball(t) = Ucarta (343)
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or that

Tpall

¢ = all (3.44)

UC&I‘

Plugging this into the expression for the y-component of the ball’s position, we find

2
g Tha , UballTball

2
2 Ucar UCaI‘

g
Yvan(t) = —5752 + Upant = — (3.45)
That is, the height of the ball that you see as a function of its horizontal position is just a

parabola:

2
9 Than , UballThall

2
2 Ucar Ucar

Yball (Than) = (3.46)
The independence of perpendicular spatial directions is extremely profound and produces

concrete predictions we can test with experiment. (See https://youtu.be/eqQ05FYZoZU)

3.4 Circular Motion

In this section, we are going to describe the kinematics of a very common situation that one
encounters in physics. We have discussed the kinematics and description of linear motion,
generalized that to multiple dimensions with vectors, and now we will discuss circular
motion. Precisely what we will study in this section is the kinematics of traveling in a
circle, but this analysis is applicable broadly to any motion that is non-linear: merry-go-
rounds, a right turn in a car, a loop-the-loop rollercoaster, etc.

I want to start with a question that we’ll address throughout this lecture. Imagine
that you are on a merry-go-round, giggling with your friends. The merry-go-round is spin-
ning/rotation at a constant speed. Are you accelerating? And if so, in what direction are

you accelerating?

(a) No acceleration (c) Yes, accelerating inward

(b) Yes, accelerating outward (d) Yes, accelerating forward

For (b), (¢), and (d), the direction of acceleration of you on the merry-go-round is:


https://youtu.be/eqQ05FYZoZU
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We’ll come back later to answer this definitively, but now we’ll set up the language to describe
circular motion. Let’s first identify positions on a circle, with a convenient origin:

YA

N

8Y

We have drawn a circle of radius r with the origin at the center of the circle. A point/position

P on the circle can be represented in Cartesian coordinates (x,y space) as
p = (rcosf,rsinf), (3.47)

where 6 is the angle as measured above the +x-axis, as illustrated. At this point, there is
no motion; this is just a point, static, unchanging. If we move in a circle, our distance from
the origin remains unchanged, but the angle # changes in time. That is, we consider time

dependence of
p(t) = (rcosf(t),rsinf(t)) , (3.48)

with 7 a constant radius. What is the simplest temporal dependence for the angle 0(¢)? Just

as we studied for motion in one dimension, the simplest motion is linear in time:
O(t) = wt + by . (3.49)

We’ll mostly restrict to this case in this lecture. This angular time dependence is called

constant angular velocity motion: w is called the angular velocity as it is the rate that
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0(t) changes in time:

d
20 =w. (3.50)

fy is a constant, the original location in angle of your position.

So, we’ll study position that changes in time as
p(t) = (rcos(wt + 6y), rsin(wt + 6y)) = rcos(wt + 0y)i + rsin(wt + 6y) ] . (3.51)

Given this position, let’s do our standard analysis of finding velocity and acceleration. Ve-

locity is just the time derivative of position:

u(t) = d%ﬁ(t) = % (rcos(wt + 6y)) 2+ % (rsin(wt+6y)) 7. (3.52)

We need to take derivatives of cosine and sine to find velocities. To do this, we exploit the

chain rule of derivatives. To take the derivative of a function of a function, the rule is

G a®) =50 (3.59)
For the x-component of velocity, we want to take the derivative
d
pr cos(wt + 6y) . (3.54)
Let’s call f(0) = cosf, and 6(t) = wt + 0. Then, the derivative is
% cos(wt + 6p) = d(;oes o %(wt +6) =w d(zloes i (3.55)

So, what’s the derivative of cos#? The answer is, which I won’t explain in more detail here,

d
@COS@ = —sinf. (3.56)
Therefore, we have
d )
— cos(wt + 0y) = —wsin(wt + 6p) . (3.57)

dt
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Similarly,
% sin(wt + 6y) = w cos(wt + 6y) . (3.58)

It then follows that the expression for velocity when moving at constant speed around a

circle is

(t) = —wrsin(wt + 0y)7 + wr cos(wt + 6y) ] . (3.59)

<y

It’s interesting to pause here for a second and think for a bit about what this velocity is
telling us. First, recall that, in the prescribed coordinate system, the position vector lies

along a radial line:

S

S 4

At this point on the circle, what is the velocity vector? To answer this question, let’s use a

trick from freshman geometry. Let’s schematically denote the position vector as
p(t) = ai+b) = (a,b). (3.60)

a and b are the cosine and sine bits, but for this argument that is just distracting. In terms

of a and b now, the velocity vector is
U(t) = w(=bi + aj) = w(—=b,a) x (=b,a). (3.61)

If T have to vectors ¢ = (a,b) and ¥, = (—b, a), what angle do they make with one another?
90°! Therefore, if we are moving counterclockwise around a circle, the velocity vector is

tangent to the circle:
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YA

<L

Ty

S 4

This orthogonality can also be captured in a dot product. The dot product of two vectors
U1 = (a,b) and U5 = (¢, d) is defined to be

171 . ’172 =ac+ bd. (362)

If the dot product is 0, the vectors are orthogonal. Let’s see this for position and velocity:

—

p(t) - 0(t) = (rcos(wt + by), rsin(wt + 6)) - (—wr sin(wt + Oy), wr cos(wt + b))  (3.63)
= —wr? cos(wt + ) sin(wt + ) + wr? cos(wt + by) sin(wt + )
=0.

Now, I have a question for you. Say an object is traveling at constant speed in a circle,

for example, by being swung with a string. If the strong is cut, how does the ball/object
travel afterward?

’ Q (C) @

Also, consider a slingshot. You twirl the sling round and round and then let go. To hit
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a target in front of you, how and when should you release it?

Finally, let’s get back to where we started, and address acceleration. If an object is
moving in a circle at constant speed, it is accelerating”? That is, is its velocity changing in
time? We said that the speed was constant, so by definition, the magnitude of velocity is
not changing. However, that’s not the only way to change velocity. As a vector, changing
velocity can mean changing its magnitude and/or direction. Clearly, the direction of velocity
is changing as you move in a circle (otherwise you wouldn’t, well, move in a circle). So, we
are definitely accelerating.

We can just take another derivative of velocity to determine acceleration, but it’s useful
to take a step back first, and think about the direction of acceleration. To do this, let’s
return to our gedankenexperiment space. First, imagine that you are sitting in a car that
is at rest. Now, the driver accelerates forward by pressing on the gas pedal. What do you
feel? What is your response to a forward acceleration? You are pushed backward; that is,
you feel a push in the opposite direction to acceleration. An analogous thing happens if the
driver now brakes. Acceleration is backward (forward motion is slowing down), yet you are
pushed forward. Keep this in mind.

Now, imagine that you are sitting at the edge of a merry-go-round that is being pushed
at a constant rate by delinquent fourth graders. Just thinking about what you would feel,
how and in what direction do you feel a push? So, from our thought experiment in the car,
what is the direction of acceleration?

Let’s now calculate acceleration from the derivative of velocity. We have

—u(t) =a(t) = % (—wrsin(wt + 6y), wr cos(wt + 6p)) (3.64)

= (—w?rsin(wt + 6y), —w’r cos(wt + 6y)) .
But wait! Recall that the position vector for moving around a circle was
p(t) = (rcos(wt + 6y), rsin(wt + 6p)) . (3.65)

Therefore, acceleration is just @(t) = —w?p(t). As a real number, w? > 0 and so acceleration
points in the opposite direction as the position vector. As p(t) pointed from the center of
the circle to its perimeter, acceleration points from the perimeter to the center. Thus, this
acceleration is “center seeking,” or centripetal acceleration.

We will end this section with one more observation. Let’s evaluate the magnitudes of

velocity and acceleration and see if there’s a relationship between them. Recall that the
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velocity vector was
U(t) = (—wrsin(wt + 6y), wr cos(wt + 0y)) . (3.66)

Its magnitude, via Pythagorus, is

7] = /(—wrsin(wt + 0))2 + (wr cos(wt + 6))2 = wr, (3.67)

because cos? + sin® @ = 1. As such, w is called the angular velocity. What about accelera-
tion? We have

@] = \/(—w2rsin(wt + 6)))2 + (—w?r cos(wt + 0y))2 = w?r. (3.68)
Note that the angular velocity in terms of the (linear) speed is
w= 191 . (3.69)

Plugging this into the expression for acceleration, we have

- )
@] = w’r = <M> r= Ll : (3.70)

r T

This will be a very useful result. The magnitude of centripetal acceleration is squared velocity

divided by the radius of circular motion.
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Chapter 4
Newton’s Second Law

In this lecture, we are really going to start in earnest attempting to describe why physical
phenomena happen. The first few lectures of the course were setting the stage, introducing
the language of vectors, kinematics, position, velocity, and acceleration, but now we have a
complete enough vocabulary we can use it to construct new sentences. So with that in mind,

here we are going to introduce forces and their consequences.

4.1 Forces and Acceleration

Let’s go back, as we often have, to our thought experiment of the train moving at constant
velocity on a very smooth track. As mentioned many times, there is no experiment we can
do on the train to determine if it is actually moving or just at rest. The laws of physics are
independent of one’s velocity, or, more precisely, independent of one’s frame of reference.
Balls fall when dropped with acceleration —g, water is still in a cup, etc., and this is (one)
consequence of independence of the physics in different dimensions. By contrast, if the train
accelerated, the driver put on the brakes to avoid colliding with cows on the tracks, you will
know it. You will feel pulled forward dramatically. Pull is an action word and specifically
what a pull does is change your motion. You were happily traveling at a constant rate, ne’er
the wiser, and then the driver changed your motion/velocity by slamming on the brakes. A
change in velocity is acceleration and a pull, precisely but even colloquially, is a force. That
is, forces (things/actions that enact change) are responsible for acceleration.

This is a profound observation and its mathematical consequence is encapsulated in
Newton’s second law, which we will get to in a second. If a force imparts acceleration, then

you can exert a force on your friend to make them fall over. That is, a push (= force)
43
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can change their idle standing ( = at rest) to falling over ( = moving). Thus, you made
them accelerate by pushing them. Further, there’s clearly a difference between pushing a
friend and pushing an elephant. With the same exerted push, your friend will fall over,
but the elephant may not even know you are there! That is, though a force is the same,
the corresponding acceleration (= change of motion) can be very different. So what differs
between your friend and a pachyderm that could be responsible for the different acceleration?
WEell, other than four legs and a trunk, an elephant is much more massive than your friend.

With more mass, an equivalent push/force changes motion less.

These considerations and thought experiments motivate Newton’s second law, which
essentially encapsulates all of mechanics that we will learn in this course. Newton’s second

law is:

—

Fnet =mda. (41)

Here, m is the mass of the object of interest, a is its acceleration (a vector, recall), and Foet
is the total or net force acting on that object. Force is a vector: you can push harder or
softer and affect the magnitude of force, and you can also push in different directions. Thus
Newton’s second law enables you to predict the motion of an object based on the forces

acting on it.

Before we make sense of this, the phrase “Newton’s second law” begs the question of if
there is a Newton’s first law, and for that matter, how many laws are there? Is it just laws
all the way down? Well, there are three “Newton’s laws” and the first and third can be
thought of as consequences of the second. So, we really won’t specifically talk about them,
like we will for the second law. (There’s also a Monty Python joke here: “Thou shalt count

to three, no more, no less. Five is right out!”)

So let’s see how Newton’s second law works in some examples. First, and most simply,
let’s analyze the forces on me, just standing here. Am I accelerating? Nope, so therefore
what is the net force that is acting on me? If @ = 0, then ﬁnet =0, too! We can break this
apart some more to make sense of how Foet = 0. What forces are acting on me; that is,
what individual pushes and pulls are exerted on me? First, gravity is pulling me toward the
center of the Earth. This gravitational force is also called weight and its magnitude is just

equal to my mass times our old friend, acceleration g:

| Fipae| = myg . (4.2)
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What other forces are acting on me? That is, am I feeling another push? Actually, you
can ask yourself this question. Simply by sitting in your seat, do you feel something pushing
on you? I feel the floor pushing on my feet. In your case, you should feel the chair pushing,
um, somewhere else. So there is also a force from a surface keeping us upright. Such a force
is called a normal force because it acts normal, or perpendicular, to the surface. I can’t
think of or feel other forces (other than the weight of the world on my shoulders...), so this
is all we have.

Let’s draw a picture to represent the forces on me:

Such a picture is called a free-body diagram and it represents all forces acting on an object.
The dot at the center is me, but I ignore all spatial extent in such a diagram. Gravity, ﬁg,
pulls me down while the floor’s normal force N pushes me up. The net force, ﬁnet, is just

the vector sum of the forces acting on me:

—

Foep = N+ F, = (N —mg)j, (4.3)

where N is the magnitude of the normal force. By Newton’s second law, this is equal to
my mass times acceleration, ma. But what is acceleration? @ = 0, so ﬁnet = 0 which then

implies that
N =mg. (4.4)
That is, the floor pushes me up juuuuust enough to counteract the force of gravity.

4.1.1 Equivalence Principle

What if there’s no floor? Not that we blow it up or something, but if we jump out of a
plane (ignoring air resistance)? Now, there is no normal force acting on me, so my free-body

diagram is
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(me)
Fy
Newton’s second law then says that
by = (—mg)j=ma, (4.5)
or that @ = —g). Of course this is consistent with that we've been playing with this whole

time: every object accelerates at the same rate under the effects of gravity, independent of
its mass.

I want to belabor this point a little bit. First, we are only able to make this claim if the
mass that multiplies @ in Newton’s second law (inertial mass) is the same as the mass that
multiplies g (gravitational mass). In principle, these two quantities could be different,
but we have 0 experimental evidence to suggest that. The claim/axiom that inertial mass
is equivalent to gravitational mass is called the equivalence principle, and its assumption
provides a deep and profound prediction. Actually, let’s this about these two systems we
just discussed a bit more. When I am standing here, or you are sitting in your chair, do you
actively “feel” a push? Well, yes, as argued earlier, I feel a push on my feet. However, and
this is odd, while I actually feel a push, my acceleration is 0. By contrast, imagine jumping
out of a plane. Ignoring air resistance, do you actually feel anything pulling you? Nope, you
feel like you are floating, or are in free fall. Nevertheless, while you feel no pull, you are
accelerating!

This is very weird and the equivalence principle suggests that gravity, as we typically
think about it, is not a force in the same way that a push or pull is. Actually, gravity is not
a true force at all; it is simply the manifestation of the curvature of space and time under the
influence of massive objects. This is completely described by Einstein’s theory of general
relativity, but for this class, we’ll just assume that gravity acts like a force, which will be

good enough for our study.

Example

Let’s go back to the topic at hand and think about another system: an accelerating elevator.
Let’s say that you are in an elevator that is accelerating upward by a. How does the

magnitude of the normal force of the floor on you compare to your weight? Is the normal
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force:

(a) larger than weight? (b) same as weight? (c) less than weight?

To solve this problem, let’s use Newton’s second law and draw a free-body diagram.
First, unless you jumped up, you are accelerating at the same rate as the elevator, a. By

Newton’s second law, the net force is then

—

Foet = md=maj, (4.6)

where the acceleration is upward (positive). Now, to a free-body diagram. What are the
forces that act on you? There’s always gravity, and we would feel the normal force from the
floor of the elevator pushing upward. Anything else, acting directly on you? Nope! So, the

free-body diagram is

and so the net force is
Frw = N + F, = (N = mg);. (47)
By Newton’s second law, this is supposed to equal

Fot = (N —mg)j=md=maj, (4.8)

or that N = m(g + a). Assuming that a > 0, the normal force must be larger than your
weight, mg.
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4.1.2 Newton’s First Law

We will discuss more consequences of Newton’s second law,

—

Fnet =mad (49)

shortly, and introduce a new force, friction, that is a major player in our everyday lives.
Here, we will pause to briefly discuss Newton’s first law.

The mass “m” that appears on the right side of Newton’s second law is called the “inertial
mass,” as it is the property of an object that opposes a change in motion. For the same
force, a larger mass object accelerates less than a smaller mass object. The word “inertia”
shares its origin with inert, which means unskilled or inactive, from Latin. That is, “inertial
mass” is a measure of the inactivity of an object. It takes more force to make a more massive
object “active”.

As I mentioned previously, there are three of Newton’s laws, the second of which is the
most general, and the first and third of which follow from the second law. So, one way
forward is to simply ignore laws 1 and 3, but they are interesting in their own right and
historically relevant, so I want to spend a little time thinking about them. The velocity of
an object is a measure of its motion, while acceleration is a measure of an object’s change
of motion in time. Therefore, by the second law, to change an object’s motion, a force must

act on it. This is the first law:
An object will travel with constant velocity until acted upon by an external force.

So, indeed that follows from Newton’s second law.

4.2 Friction

We'll visit the third law at the end of this section. Until then, let’s discuss a force that is
necessary for nearly all of our mundane activities. The only force we have discussed that one
object can act on another object is normal force. As the name suggests, normal force acts
normal or perpendicular to a surface. For example, the normal force of the floor holds me up
and prevents me from falling to the center of the Earth. However, this is clearly not the only
way that objects can exert forces on other objects. Right now, I am exhibiting a miracle of
science: I am holding up a piece of paper between my fingers. This paper is clearly at rest,
not accelerating, so Newton’s second law says that its net force must be 0. Let’s draw its

free-body diagram:
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4 ffric
Ny N,
—— >

vﬁg

The paper has mass, so feels a force of gravity, and my fingers exert normal forces on the left
and right of the paper. Note that this cannot be all that is happening. If this were all, then
there would be a net force and the paper would therefore accelerate. My fingers exert another
force on the paper: friction. Simply by holding the paper, my fingers stick slightly to it, in
a direction tangential to the surface of my fingers. This friction arises from weak bonding
at the atomic level between my fingers and the paper. However it works microscopically, we
can assign it a name and a value. Friction is often denoted ﬁric, with a lowercase “f” and
opposes relative motion in its reference frame. Adding friction, we then have a free-body
diagram that can have 0 net force, and therefore actually describes the situation at hand.
So, what is this friction force and what are its properties? Let’s consider analyzing the
forces acting on this block sitting on this table. I will attempt to push it, but let’s say that

it remains at rest. The physical picture of this is

AN
[ 4 - -
ffric Fme
block and free-body diagram ——
4 ﬁg

If the block doesn’t move, @ = 0, and so the net force is 0. In the absence of friction, my
pushing force would have accelerated the block to the right, so friction acts to oppose this
motion in its frame. So, to ensure that @ = 0, we must have that ﬁric = —ﬁme.

If T pushed hard enough, however, the block would move, if I overcame friction. What is

this minimum force to move the block? In general, I don’t know until I measure it, but we
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are scientists so we get to make hypotheses. Note that the normal force is always just

—

N=—F,, (4.10)

regardless of how hard I push. From your experience, how do you think the minimum force
to push the block would change if I doubled the mass, and therefore doubled the normal
force? What if the size of the block surface that touched the table changed, but the mass
was unchanged? I will postulate a hypothesis, and then we will test it. My hypothesis is

that the maximum friction force is proportional to the normal force:
|ffric| §M3|N| (411)

Here, because the block is not initially moving, the proportionality constant p is called the
coefficient of static friction. Once my push force exceeds ,us]]\7 | in magnitude, then the

block should move.

Example

We will test two aspects of this hypothesis here and now. (Seehttps://youtu.be/CaCsilLHS_
- A for the demonstrations.) The first test will be to see the response if the mass is doubled.
From our free-body diagram, the magnitude of the normal force is just the weight of the
block, |]\7 | = mg. Therefore, if the mass m is doubled, how should the maximum frictional
force be affected?

(a) doubled (b) halved (¢) unchanged (d) other

Next, this maximal friction force is solely determined by its relationship to normal force,
and all other properties are encapsulated in g, which is just some number. What do you
predict, with our hypothesis for the form of the maximal friction force, happens if the surface
area of the block that touches the table changes? We leave the weight of the block the same,
but we will just rotate it on its side, so the surface that touches the table is halved. Will the

maximal friction force be:
(a) doubled (b) halved (¢) unchanged (d) other

Friction is a very important feature of the world and without it, everyday experiences

would be dramatically altered. I want to show a tragic clip of what happened to elementary


https://youtu.be/CaCsiLHS_-A
https://youtu.be/CaCsiLHS_-A
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school students when they went through a day with no friction. They were never the same
afterward. (See https://youtu.be/TcdcYBRIk3Kk)

4.2.1 Newton’s Third Law

Finally, let’s go back to the first thing we talked about and finish up Newton’s laws. Let’s
consider again us pushing a block, but this time, let’s slide a piece of paper between us and
the block:

We are pushing with a force F , but we’ll say that friction is sufficient to prevent movement
of the block. In particular, this also means that the paper is at rest. As it is at rest, its net
force is 0. What are the forces on the paper? Clearly I am pushing on the paper. Gravity
is pulling on the paper, and there is friction between me and the paper. What is the block
doing? Well, let’s draw the free-body diagram thus far

N
+ ffric
_

F
(paper) ¢——

VE,

Friction could cancel the force of gravity on the paper, but there would still be a net horizontal

force, F. The paper is at rest so this is impossible. Therefore, the block must be pushing on

the paper with force —F"

A ffric

—

Fblock,paper Fme,paper
——>

—

VE,

Now, the paper was just a thought device; I can remove it and the block must still be pushing
to the left with force —F. That is, if I push on the block with force F , the block pushes on

me with force —F. Newton’s third law is typically stated as:


https://youtu.be/TcdcYBRIk3k
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Every action has an equal and opposite reaction.

Later, we will see that this is the statement of conservation of momentum.

Example

In this example, I have a string attached to a bar, which is itself attached to a weight, off of
which another string is attached. We are going to do two things: first, I will quickly yank
the bottom string, and second, I will slowly pull the bottom string. So, I have two questions

for you:

1. When I yank the bottom string quickly, which string will break first?

(a) top (b) bottom (¢) both at the same time

2. When I slowly pull the bottom string, which string will break first?

(a) top (b) bottom (¢) both at the same time

Let’s think about these two cases for a second before we try it out. For the set-up in which
you yank the bottom string, we are imparting a large force very quickly. Even though it is
a large force, because of the large mass of the weight, its acceleration is small, which means
that the acceleration of the string above it is small. Only the string at the bottom has a
large acceleration and so will break first.

By contrast, if we slowly pull the bottom string, then the bottom string, weight, and
the top string accelerate together. The top string additionally is pulled by the weight of
the, uh, weight, so the tension on the top string is greater than that of the bottom string.
With enough pull at the bottom, the top string will break first. Let’s test this out! (See
https://youtu.be/Hui_LbLBqjg)

4.2.2 Coeflicient of Static Friction

We had introduced the coefficient of static friction p; through our hypothesis for how the
force of friction acts on objects. One way to determine the value of g is to just see what
is the minimum force you must apply to get a block moving, and compare that force to the
normal force on the block. This technique requires measuring forces accurately, which we

may not be able to do easily. Instead, I want to introduce another method here that is much


https://youtu.be/Hui_LbLBqjg
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simpler and only requires measuring one angle. Here’s the setup: I am going to put a block

on an incline or ramp whose angle with respect to the horizontal I can vary, like so

Now, I tilt the ramp, increasing 6 juuuuust until the block starts to move. That angle, 6,
then tells me information about the coefficient of static friction, .
We’ll analyze this in a second, but I want to first ask you to think about how 6,,;, can

be related to us. Is ps equal to:

(a) pts = cosOpin (¢) ps = tan Opiy
(b) ps = sin Opin (d) some other relation

Don’t fully analyze the problem now; just think about limiting cases and what each
expression would imply for the value of u,;. For example, what should the value of ug be
if the minimum angle was 0, 6,;, = 07 By contrast, what should the value of u, be if
Orin = 90°7

Okay, let’s analyze this system now. As always in this game, we draw a free-body diagram
for the block:

2

ffric

Note the normal force is always perpendicular to the ramp and the block would want to slide
down the ramp, so the friction force acts in the direction up the ramp.

As the free-body diagram demonstrates, this is manifestly (that is, “obviously”) a two-
dimensional system, so we need to identify our axes appropriately, in a way to simplify the
physical description. The physics cannot depend on the coordinates we use, but we can
exploit properties of the system. First, our goal is to understand the force of friction, f, so it
might be easiest to align the friction force with an axis. Correspondingly, the normal force,

N , would also point along an orthogonal axis. So, we will set up coordinates as
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where the x-axis points down the ramp and the y-axis is perpendicular off the ramp.

With this coordinate system, we can now write the vectors in component form. We have:
N = Nj, f=—fi, F, = mgsin i — mg cos 6. (4.12)

Note also that we are assuming that the block is at rest and so its acceleration is @ = 0,
and net force is also 0. Therefore, the net force in each dimension must be 0. As a vector

equation, we have
N+f—|—ﬁg:O:(mgsiné’—usN)i—l—(N—mgcosﬁ)j, (4.13)
or that
N —mgcosf =0, mgsin® — pu; N =0. (4.14)
This requires that N = mg cos#, and plugging this into the second equation, we have
mgsinf = puymgcos@ or that s = tan Oy, (4.15)

where 6,,,;, is the minimum angle at which the block slides.

Whenever you get a result, you should always ask yourself if it makes sense. Do you
ski, mountain climb, or hike? The tools you use for each of these activities are optimized to
increase or decrease friction. First, if you ski, you wax your skis to decrease the coefficient
of friction so you can ski faster, as well as ski (that is, actually move) on slopes with small

inclines. If 6, is small, tan 6,,;, is also small and pu, is small. Makes sense.

By contrast, if you are rock climbing, you don’t want shoes covered in Teflon, you want
sticky, rubber shoes. You want to stick to steep walls, making 6,,;, as large as possible. If

Omin 1s large, then pu, is large. Again, makes sense.
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4.2.3 Coefficient of Static Friction, Redux

For the final part of this analysis, I want to revisit the system we just studied, to explicitly
demonstrate that indeed the physics is independent of our description of it. Instead of
aligning our axes with the slope, we’ll just keep the axes horizontal and vertical. This
will lead to different intermediate steps, but the final result will be identical. Further, it is
important to know how to solve physics problems in many different ways. Different solutions
to a problem provide different insights into how the physics is working and manifesting itself,

and can lead to a deeper understanding, even for the most mundane of problems.

So, with that motivation, let’s redraw our free-body diagram with our new coordinate

basis:

In this coordinate basis, the components of the vectors are
ﬁg = —mgJ, N = Nsini+ N cos 6, f= — s N cos 01 + pug N sin 67 . (4.16)

As before, there is no acceleration in either dimension so Newton’s second law implies that
both

Nsin€ — psN cos =0, —mg+ N cosf + u;Nsinf =0. (4.17)

Now, in this coordinate system, the first equation, no acceleration in the horizontal dimen-

sion, immediately implies that
s = tan Oy, . (4.18)

Recall that earlier we had found that N = mgcosf, when our coordinates were oriented

along the ramp. Does that still work in this case? Solving for N in the second equation, no
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acceleration in the vertical dimension, we have

mg
N = : 4.1
cos t 4 pssin 6 (4.19)

With ps = tan @, note that

20 +sin% 6 1
cosf + tanfsin = — AL . (4.20)
cos 6 cos 6

Then, N = mgcos#, as earlier! So, indeed, the physics is independent of our description of

it. A pithy way to state this is:

Our art must imitate Nature, but Nature cannot imitate art.

4.3 Centripetal Force

I want to impress my son, so I have thought of a fun experiment. We all know that water
will sit in the bottom of an upright glass. Indeed, if this were not the case, life would be
much more difficult. Anyway, that’s not the experiment. What I want to do is keep the
water in the glass when it is upside-down. Is this possible? Clearly, I can’t just turn the
water glass upside down and keep water in it, because that is how you drink. So, let’s go
systematically through systems that would keep the water in the glass.

First, let’s pour water in the glass and just drop it, upright, on the ground. Does the
water stay in the glass in this case? As always, we ignore air resistance. As the glass and

water fall, they both accelerate at g:

Because the glass and water start together and accelerate at the same rate, they stay together
as they fall. Thus, the water stays in the glass as it falls.

This correspondingly tells us how we can keep water in the glass when it is upside-down.
Pour water into a glass when you are on an airplane, jump out, and then turn the glass over!

The water and glass (and you) will all accelerate at g, and so the water will stay in the glass:
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a=—g)

So, we have succeeded! We just need to accelerate the glass/water downward at g, i.e., in free
fall, and the water will stay in the glass. However, demanding that we do this by jumping
out of a plane isn’t very practical.

Let’s think of another way to get the glass upside-down without the water spilling. We
could also swing the glass with water in it in a big, overhand circle. At the bottom of the
circle, the glass is upright with the water in it, while at the top of the circle, the glass will

be upside-down with the water in it, just like we want. So, the physical set-up is

where I have (poorly) drawn a picture of me attempting to twirl the glass in a circle.

So, is it possible to twirl a glass in an overhand circle so that the water does not fall out?

(a) Not possible (c¢) Yes, possible but there is a minimum
twirl rate
(b) Yes, possible at any rate
What do you think?
For the water to stay in the glass, then necessarily the water must stay in the glass when

it is at the top of the circle:
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What are the forces on the water? Of course gravity, but also (possibly) a normal force from

the glass

—

Nv| .
Iy

There are no other relevant forces, so this suggests that the water is accelerating, by Newton’s
second law. We had already argued that for the water to stay in the glass, the acceleration

a, of the water must be (at least) ¢g. Using Newton’s second law we find

N
ma, = N +mg, or that ay=—+g>yg, (4.21)
m

as normal force and gravity act in the same direction.
Additionally, the glass/water system is traveling in a circle, so we know how to interpret

this acceleration: it is centripetal acceleration, where its magnitude is

’U2

Qeent = Ay = 7 , (422)

where v is the tangential velocity of the glass/water, and r is the length of the string I am
swinging (the radius of the overhand circle). So, to keep the water in the glass, we must
have that

2
ay = U? > g, or that v>./rg. (4.23)

That is, there is a minimal speed below which the water will fall out of the glass and above
which it will stay in.

Let’s continue to analyze this system. In particular, what is the tension in the string at
the top of the circle? To study this, let’s consider the free-body diagram for the glass at the
top:

2
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There are only three forces acting on it at the top: its weight (of course), the tension in the
string that twirls it, and the normal force of the water. The normal force of the glass on the
water is a force pair with the normal force of the water on the glass, and so this force on
the glass acts in the vertical direction, upward. By Newton’s second law, the sum of these

forces is responsible for the centripetal acceleration of the glass:
T+ mg— N = Maeens > Mg . (4.24)

In the inequality on the right, we have simply noted that the centripetal acceleration at
the top of the loop must be at least the acceleration due to gravity, g. So, rearranging the
inequality, we find that the magnitude of the tension force is at least the magnitude of the

normal force:
T>N. (4.25)

We argued earlier that the minimum normal force on the water/glass by the glass/water is
N = 0. That is, the tension 7' is, well, anything and the glass can still travel in a circle.
However, our analysis assumed that there was a tension at alll What happens if it is no

longer true that
02
Oeent = — = 97 (426)
r

That is, what if the velocity of the glass is too small at the top of the loop? In that case,
there is no normal force, the string goes slack, and the only force on the glass is gravity.
That is, the glass would enter free fall, and just travel in a parabola, rather than a circle.

Let’s test these predictions out! I have a cylinder on a tray and I will fill the cylinder with
water and we’ll observe what happens when I swing it above my head. These demonstrations
are rather dangerous, especially with the potential for flying cylinders once they enter free
fall. However, I am here to sacrifice my body to science, so let’s do it! (See https://youtu.
be/hN5I1vqGaxU)

4.3.1 Limits of Circular Motion and Centripetal Acceleration

It’s also interesting to consider the forces that are acting on the water/glass at the bottom

of the circle. At that point, the forces on the glass are


https://youtu.be/hN5I1vqGaxU
https://youtu.be/hN5I1vqGaxU
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Nv| _
Fg
Now, if the glass is traveling in a circle, the sum of these forces are responsible for centripetal
acceleration,

2
MOcent = mv— =T—-N—mg, (4.27)
r

or that the tension in the string is

2
T=m—+N+mg. (4.28)
T

This is fascinating: we can spin/twirl the glass faster and faster (increase v) and eventually
the tension will be so large that the string will break. Let’s try this out! Actually, no way,
this is much too dangerous.

Before moving on, I want to have you think about something. If the centripetal accel-
eration at the top of the loop of radius r is just g, then what could the expression for the
velocity at the bottom of the loop be? What changes from when the glass is at the top to
when it is at the bottom?

In a related vein, consider swinging on a, well, swing. Is it possible for you, with no
one pushing you, to ever “swing over the bar”? Can you ever pump your legs hard enough
to provide high enough speed such that your velocity at the tippy-top provides enough
centripetal acceleration for equal g7 How fast would you have to be going at the bottom?

A few more notes before we move on to the next chapter. One aspect of roller coasters
is the feeling of weightlessness at the top of a loop. “Weightlessness” simply means that
the only force acting on you is gravity, so you are accelerating at g. One feature of the
particular feeling of weightlessness is “butterflies in your stomach.” This is due to your
organs literally floating in your body when you are weightless. When you are standing on
ground, your organs are held in place by a matrix of ligaments and such, but when weightless,
then tension on the matrix vanishes, leaving your guts just afloating.

Additionally, this property of circular motion can be exploited to simulate the force of

gravity. There’s a famous scene in 2001: A Space Odyssey in which David Bowman is running
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on the inside of a revolving cylinder as such:

Say the revolving cylinder has radius r and is rotating with angular speed w. We then know

the centripetal acceleration of the cylinder:
Qeont = W2T . (4.29)

If this equals g, then the acceleration of the cylinder would be the same as the acceleration
due to gravity on Earth. However, would this apparatus actually simulate the gravity we
know and love? Think about it!
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Chapter 5

Energy

Beginning in this chapter, we will start our foray into conservation laws, their conse-
quences, and utility for understanding physical systems. I had introduced conservation laws
at the beginning of the lectures from asking why we can trust our memories. The physics an-
swer to this is that the laws of physics, i.e., the rules that govern how we engage with Nature
and our environment in particular, do not change in time. That is, things we learn yesterday
(I hurt my hand by touching a hot stove) can be applied to actions tomorrow (don’t touch
a hot stove). I had also mentioned then that this implied the existence of a symmetry: a
transformation that we can perform on a system that leaves it unchanged. More precisely, a
symmetry transforms a system to itself. In the case of trusting our memories, the symmetry
action is time translation: the laws of physics are unchanged by travel (translation) through
time. Additionally, I had argued that there should be a single quantity that is a measure of
this time translation symmetry. That is, if time translation is a perfect symmetry, then this
quantity is conserved, its value does not change in time. This intricate relationship between
symmetries and conservation laws is called Noether’s theorem and the conserved quantity

associated with time translation is energy.

We denote energy by F and we will define it (for now) as the measure of an object’s or
system’s ability to perform a task. This definition is consistent with our colloquial use of
“energy.” If you “have no energy,” then you can’t even perform simple tasks. Today, we
will just study the energy of single object or particle systems, which will simplify our task

for determining what this “energy” is.
63
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5.1 Kinetic Energy

Historically, the first person to recognize conservation of energy as a consequence of Newton’s
laws was Emilie du Chatelet, an 18th century natural philosopher who also translated New-
ton’s Philosophie Naturalis Principia Mathematica into French, making significant correc-
tions and improvements on its presentation and implications. The method that du Chatelet,
or other Enlightenment natural philosophers, used to measure the energy of a moving ob-
ject was the following. A lead ball of mass m was thrown with speed v at a chunk of clay.
The ball correspondingly smushed the clay, embedding itself a distance d into the clay. The
distance d was thus a measure of the lead ball’s ability to perform a task; that task being
deforming the clay. We'll study a similar system, more familiar for what we have studied,

to identify the energy of a moving object.

5.1.1 Energy from Newton’s Laws

What we will do is the following. We will give a block of mass m a velocity ¢, and then
it will travel over a surface which has friction. This friction force will accelerate the block,
eventually stopping it. We would like to determine the block’s ability to slide over the
surface. We will measure this ability, i.e., the block’s energy, by the distance d it travels over

the surface. So, the setup is

T

m /f

Before we study this system, I want to make a note. Energy is a scalar quantity: it has
only a magnitude, and has no direction. From our setup, this makes sense: the distance d
is just a distance (magnitude) and not a vector (displacement). Whatever direction ¢ is, we

want to stop it, so direction is irrelevant.

To study this system, let’s recall the kinematic equations and Newton’s second law. The

free-body diagram for the block when it is on the surface with friction is
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The block is not accelerating vertically, so N = —F;. Newton’s second law in the horizontal
direction is
f=—fi=md=mag, (5.1)
or that acceleration a, is
f
‘ (52)

We could relate f to normal force and therefore weight, but we won’t here.

With the initial velocity vector v = vi, we have the kinematic distance equation
L
d= §%t + vt (5.3)

as the block slides a distance d along the surface. This is written with time explicitly, but

we can eliminate that using the kinematic equation for speed:
0=a.t+wv, (5.4)

where we note that the final velocity is 0. I want to emphasize that these kinematic equations
can be used because acceleration a, is constant: the friction force f is constant. Then, the

time over which the block slides is

t = _v (5.5)

ay

Plugging this into the equation for distance, we have

1 2 102
i= 1, (_3> ECISSS Ul (5.6)
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We had also found that a, = —f/m earlier, so this is also
1 22
_Z —d .
2y~ (5.7)

or, more naturally, as

%va = fd. (5.8)

This relationship is immensely profound. The expression on the left, %mv2, is exclusively
written in terms of the block’s properties. It is called kinetic energy because it is a measure
of the energy due to the block’s motion:

1
K = —muv?.
2

(5.9)

The expression on the right, fd, is exclusively written in terms of how the surface acts on the
block. The surface exerts a force f on the block over a distance d. This force is responsible
1

for reducing the kinetic energy of the block from Emv2 to 0. As such, we say that the surface

did work on the block equal to
W = fd. (5.10)

We’ll explore this later and more precisely, but work done by a force changes an object’s

kinetic energy. Specifically,
W = AK, (5.11)

called the Work-Energy Theorem.

5.1.2 Newton’s Laws from Energy

Now, we said some words that if energy is conserved, then the laws of physics should be
independent of time. The work-energy theorem is a statement of conservation of energy:
kinetic energy can be transformed into some other form of energy by exerting work, but
it can’t disappear into the sether. Newton’s second law is a law of physics, so if energy

is conserved, it should somehow follow from W = AK. Let’s see how this is done in our
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example.

We had derived

1
§mv2 — fd=0, (5.12)

which is just the statement of the work-energy theorem, with everything to one side. If this
is true at any time, then it has no time dependence or its time derivative is also 0. That is,

the statement of time independence is
d (1
B (e — =0. 1
o (va fd) 0 (5.13)

Let’s take derivatives and see how we can simplify this expression. The mass m of the
block is constant, so the only relevant derivative of kinetic energy is of the v? term. We find,

using the chain rule,

dv?  dv? dv
7 _9 14
at v dt " (5.14)
where we note that
dv? d
d—i; = 2v, and d—;} =a, (5.15)

acceleration. Then, the time derivative of the kinetic energy is

i1,
- gy =mua. (5.16)

Next, the time derivative of fd is equally simple. By assumption, the friction force is a

constant, so only d might depend on time. However,

d
—d=— d

the negative of the speed, because if d increases, speed decreases because friction slows the
block. It then follows that

d
= (fd) = —fv. (5.18)
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Using these results, we have

d

pr (%va — fd) =0=mva+ fv. (5.19)

The velocity v appears in both terms, so we can safely cancel it out, producing
ma=—f, (5.20)

which is just Newton’s second law for a friction force. This demonstrates that, in a well-
defined way, Newton’s second law is very literally derivative of conservation of energy. As
such, we consider conservation of energy more fundamental than Newton’s second law.

We will provide a more precise definition of work, the work-energy theorem, and demon-
strate how Newton’s second law follows as a vector equation from conservation of energy in

later lectures.

5.1.3 Energies at Particle Collision Experiments

I now want to use this new idea of kinetic energy to understand a feature of my research.
The Large Hadron Collider (LHC) in Geneva, Switzerland, accelerates and collides protons
at enormous (relative) energies. We’ll attempt to get a sense for how large the energy of an
individual proton is at the LHC. First, the unit of energy in SI is called the Joule J, after
James Joule, a Scottish engineer. By the work-energy theorem, note that the units of the

Joule are
[J]=[NJm = kgm?s 2. (5.21)

In Joules, the kinetic energy of a proton at the LHC is about 107° J. (More useful units of
energy in particle physics is the electron-Volt, for which the protons carry about 103 eV
of energy.) Objectively, is this a lot of energy?

1079 J is a small number, but let’s relate it to more everyday energies. For example, let’s
consider the kinetic energy of a flying mosquito. The mass of a mosquito is about 5 mg or
5 x 107% kg. At top speed, a mosquito can fly at about 1/2 m/s, so their kinetic energy is

K==(5x107%(05)? J~6x107"1J, (5.22)

1
2

very close to the kinetic energy of a single proton at the LHC! I want to emphasize the scale
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here. A mosquito contains about 10%° protons, and yet the LHC packs the same energy of a

mosquito into 1 proton!

The energy of a mosquito may still be a bit abstract, so let’s try another comparison.
Your hand (rather, one of them) is about 0.5% of your body weight. I weigh about 80 kg

(times g), so the mass of my hand is about
my =0.5x 1072 x 80 ~ 0.4 kg (5.23)

If the kinetic energy of your hand is K, then its velocity v is

1 2K
K = —mgv? or, solving for v, v=4/—. (5.24)
2 mpg

Plugging in K = 107% J and mpy = 0.4 kg, the velocity of one of your hands necessary to

have kinetic energy equal to one proton at the LHC is

2 % 10-6
v = ,/X0—4 m/s~ 2 x 107 m/s, (5.25)

or a couple of millimeters per second. This is about the rate of a (very) slow clap, again,

contained in a single proton at the LHC.

The LHC doesn’t collide individual protons together; rather, bunches of about 10! pro-
tons are collided. There are about 10'° people on Earth, so there is more energy in the

protons at the LHC than if energy human on Earth simultaneously clapped!

5.2 The Work-Energy Theorem

The work-energy theorem is the statement that the change in kinetic energy of an object is

the amount of work done on that object:
AK=W. (5.26)
We had introduced kinetic energy as

K = —mv*, (5.27)
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and so

1 1
AK = —mvjzc — —mw?

. 2
2 2 1) (5 8)

for initial and final velocities v; and vy, respectively. We had briefly introduced work, but
we will make it more precise in this lecture.

Let’s first consider motion in one dimension. Let’s say that we have an object of mass
m which is being acted on by a force F. This mass therefore has a velocity that varies as a

function of time or position:

(0¥ N VA

N NS

t x

like so. We would like to derive a relationship of the change in kinetic energy AK of the
object as it travels to the force acting on it.

The difference in kinetic energy at times t and ¢t + At is
1 2 1 2
AK = §mv(t + At)* — §mv(t) : (5.29)

As At — 0, this can be related to the time derivative of kinetic energy, where

dK Imo(t + At)? — Imo(t)?
Ay 2R AD” = gmolt” (5.30)
dt At—0 At

dv
dt>

multiplied by . Now, using Newton’s second law, note that

where a = 22, and we used the chain rule. Note that v(t) is velocity at time ¢, not velocity

dz
=oF = F— 5.31
mva = v i (5.31)

where on the right, we just note that velocity is the time derivative of position x. Thus

simply differentiating kinetic energy by time, we have found

dK B Fdx

—=F (5.32)
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Now for some trickery...In this Leibniz notation, derivatives are, really I swear, ratios,

so we can cross cancel and divide. So, we “cancel” the dt factors, and find

dK = Fdx, (5.33)
or, by dividing by dx on both sides,
dK
— =F. 34
. (5.34)

That is, the derivative of kinetic energy with respect to position z is force!
Almost there; let’s integrate both sides of this expression over position x from = = a to

2 = b. The Fundamental Theorem of Calculus states that

/bii_fdx:K(x:b)—K(x:a)EAK, (5.35)

while integrating over force, we find

b
AK = / Fdz. (5.36)

This is the work-energy theorem: the change in kinetic energy of an object is equal to the
integral of force over the trajectory of the object. This implies Newton’s second law and

vice-versa.

5.2.1 Going Beyond One Dimension

That’s the story in one dimension; how do we generalize the work-energy theorem to multiple
dimensional motion? Let’s think again about what kinetic energy is and how forces change
it.

Example

Now, I want to introduce a definition of kinetic energy that will serve our purposes for
considering the generalization of the work-energy theorem. I will define kinetic energy of a
ball, for example, as measured by how much it hurts when it hits you. Let’s consider two
set-ups: one where the ball is thrown straight at you with speed v, and the other where the

ball is attached to a string and rotated such that the ball has tangential speed v. That is,
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we have the set-ups:

\\g;/\
=@-Ys <

Which ball will hurt more when it hits you?
(a) linear ball (b) circular ball (c) same hurt

Okay, now can I get a couple of volunteers? (Just kidding!)

Immediately before the ball hits you, they were both traveling with speed v. Who cares
that one ball was traveling in a line and the other in a circle: all of that velocity, for both
balls, has to stop when they hit you. So they will both hurt the same!

Why is this relevant? Well, are the accelerations of the balls different? What would that
suggest about the forces acting on them? Correspondingly, what would that naively suggest
for the work-energy theorem in multiple dimensions?

For the ball moving in a line, its kinetic energy is constant, %va, until it hits you.
There are no forces on the ball: its velocity vector is constant. For the ball moving in a
circle, its velocity vector ¢ is continuously changing direction, but keeps its speed constant.
Apparently simply changing direction does not change kinetic energy. That is, accelerations
and therefore forces that exclusively change the direction of velocity do no work.

What special about the acceleration that keep the ball moving in a circle? It is centripetal
acceleration, and as we discussed earlier is perpendicular to tangential velocity. That is,
the force responsible for keeping the ball in a circle is perpendicular to the motion of the
ball. This identification suggests that forces exerted perpendicular to motion only change
direction, and do no work.

Therefore, to determine the work done on an object, we only care about those forces with
components in the direction of motion. Only they can do non-zero work.

So let’s analyze this for a particular velocity vector and force. Let’s say we exert a force

F on an object of mass m with velocity v as

F
A
U
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Let’s call the angle between the force and velocity 0. As argued earlier, the component of F
perpendicular to v does no work, so just for studying energy, this is equivalent to

——
— v
Fcos@

or that

dK
e F cos®. (5.37)

If we turn infinitesimals into small, finite changes, we have

AK = F Ax cosf = Fvcosf At . (5.38)

Note that if the object has speed v, then it travels a distance Ax = v At in time At. The

quantity F'vcos @ picks out only the component of force in the direction of motion.

5.2.2 The Dot Product

It turns out that “Fwvcosf” can be nicely encoded in a vector operation called the dot
product. Consider two, two-dimensional vectors A and B. Without loss of generality, we

can express their components as
A=AcosOsi+ Asinby4j, B = Bcosfpi+ Bsinfgj. (5.39)

We have the picture that

ool

(Pt
0a

T

Note that the angle between the two vectors is A0 = 0g — 64.
Now, the dot product is defined as the sum of the products of each components of the

vectors. Specifically, we have

A-B = (Acosf,)(Bcoslp)+ (Asinf,)(Bsinfgz) = AB(cos 04 cosfp + sin 04 sin 0)
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= ABcos(fp —04) . (5.40)

In the first line, we just multiplied x-components by x-components and summed them with
y- times y-components. In the final line, we used a trigonometric identity. That is, the dot

product is exactly what we need and picks out the shared component of two vectors.

So, we can equivalently write

dK .,
%:FvcosezF-U. (5.41)

This is the work-energy theorem for motion in arbitrary dimensions.

There are a couple of other properties of the dot product that are useful to mention. First,
a vector as a mathematical object is defined by how it changes when undergoing rotation.

For instance, A vector with some coordinate system is

Y A

A= Acosfi+ Asindj

T

For coordinates rotated by ¢ with respect to these coordinates, the vector is then expressed

as

Rotation changes the direction of the vector with respect to coordinate axes, but does not
change its magnitude.
A scalar as a mathematical object is unchanged under rotation. Three apples are still

three apples when rotated:
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N

000

Let’s consider the rotation of the dot product. For our vectors A and B from earlier, their

angles with respect to the z-axis would transform under a rotation of ¢ as:
9,4—>9A—¢, 93—>03—¢. (542)
However, their dot product transforms as

A-B = ABcos(05 —04) — ABcos[(05 — ¢) — (04 — ¢)] (5.43)

— ABcos(05 —04) = A- B.

That is, the dot product is rotation-invariant. The dot product takes two vectors and returns

a scalar, just a number.

5.3 The Simple Harmonic Oscillator

In this lecture, we are going to introduce the approximation to end all approximations: the
spring or simple harmonic oscillator. To first approximation, almost everything in Natu-
ral is modeled as a spring in physics. In my own research, interactions of elementary particles
are modeled as mediated by a spring. In fact, the calculational technique used generally in
particle physics called Feynman diagrams, after Richard Feynman who introduced them,

uses a spring drawing to denote a gluon, the force carrier of the strong nuclear force:

90000, +— s

5.3.1 Model as a Spring

So what’s the deal with springs and why are they everywhere? To answer this question, we
need to figure out what force a spring can exert on an object. First, if you just encountered

a spring on the street, it would likely be smoking Pall-Malls, wearing a trench coat; that is
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to say, it is relaxed. A relaxed spring is one for which it is neither extended nor compressed;

it assumes a length [ when no forces act on it

L0QQQOQRAQ,

l

Now, let’s imagine compressing the spring, from relaxed length [ to [ — Ax:

000000000,

| — Az

If you have ever tried to compress a spring, what do you notice about the force you must
apply as Ax increases? It gets harder and harder to compress the spring as Az increases!
This is unlike gravity or friction forces that we have dealt with thus far: both of those (so
far) have been constant forces, independent of position. Additionally, a compressed spring
wants to return to the relaxed position. That is, if you compress a spring you feel a strong
force pushing your hands apart.

One can do a similar thing with a spring extended to length [ + Ax:

RQQQQQQAQQ

|+ Ax

Now, to extend the spring, you have to pull your hands apart with more and more force as
Ax increases. These observations suggest that the force a spring can exert on an object is
monotonic with Az. Further, the spring force is a restoring force: the force a spring exerts
acts to return (“restore”) a spring to its relaxed length [. That is, the force that the spring

exerts is in the opposite direction of the change in length:

—

—

| — Ax [+ Ax

5.3.2 Hooke’s Law

These considerations motivate Hooke’s law for the force of an (ideal) spring:

—

Fo=—kAxi, (5.44)
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for a spring oriented along the z-axis. Here, Az is the difference in length of the spring
currently and its relaxed length. k is called the spring constant and is a measure of the
“stiffness” of the spring: larger k means stiffer spring (more force for the same Ax). The
overall negative sign indicates that this is indeed a restoring force: the direction of force
opposes the direction of compression (Az < 0) or extension (Az > 0).

Hooke’s law is named after Robert Hooke, a contemporary of Newton. Hooke often used
ciphers to disguise this scientific discoveries. He first described the law that now bears his
name in a Latin anagram ceiiinosssttuv, whose solution is Ut tensio, sic vis, which translates
to As the extension, so the force. Hooke also had a famous scientific rivalry with Newton,
after criticizing Newton’s theory of optics. As the president of the Royal Society, Newton
saw to it that Hooke’s scientific writings and even portraits of him were destroyed.

So why is the spring so universal in physics? It is because of its simplicity. A general
function f(z) can, under reasonable assumptions, be expressed in a polynomial-like form

called a Taylor series,

e (5.45)

If x is small, near 0, then higher powers of x are small and can often be neglected. If x is small
enough that we can neglect 2 and higher terms and f(0) = 0, the function approximates to
a line

df

. (5.46)

=0

Hooke’s law is simply the Taylor expansion of a force that depends on the relative displace-

ment Az, expanded to linear order in Ax:

dF
F(Az) =~ Ax : (5.47)
d(Az) | 5,
Hooke’s law says that
dF
= —k, (5.48)
d(AZ) [r,—g

the spring constant. Springs, or Hooke’s law, is so ubiquitous in physics because to first
approximation (as defined by the Taylor series) almost every force anywhere is a spring

force.
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We recently learned about work, so let’s see if we can figure out how much work a spring
would do on an object. Let’s say we have compressed a spring a distance Ax and at the end
of the compressed spring we place a block of mass m. The block is on a frictionless surface

and the other end of the spring is connected to a wall, to prevent it from flying away:

k

| — Ax

The spring constant is k. If we then let go of the block, how much work will the spring do

on the block? First the force that the spring exerts on the mass is

—

F, = kAzi, (5.49)

where we assume k and Ax are both positive. As the spring expands, pushing the block, it
only acts to push the block up to the point it reaches its relaxed length, and then no longer
pushes the block. Thus, the spring only exerts a force over the compressed distance Ax.
The spring force is exerted in the direction of the block’s motion, so the work done is

Az

Ax Az 1
W = / FydAz' = / k Ax' dAz" = ik(Ax’)z
0

1
= —kAx*. (5.50)
0 0 2

This is an expression we will come back to over and over: the energy that a spring imparts
on an object compressed (or expanded) by a distance Az is %k Ax?.

By the work-energy theorem, this is equal to the kinetic energy that the block gains

1 1
AK =W = 5/{ Ax? = 5?7”&1)2. (5.51)

So the speed of the block after this springing is

v=Az \/% (5.52)

It is also useful to see how this follows from simple dimensional analysis. The units of

the spring constant are

k] = F} - [@} = MT2. (5.53)
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For a spring with constant k, Ax compressed distance, and pushing a mass m, the mass’s

speed after the spring push can be written as
v = k*"AxPme,
for three powers a, b, c. Expanding this expression out in basic units, note that
(k*Aabm] = MOT=2a[PM¢ = Mate[PT—2%
For this to equal speed v, which has dimensions
[v] = LT !,
we must have that a = —c, b=1, a = %, so then ¢ = —%. That is, we find that
v=k"?Azm™?,

exactly as predicted by the work-energy theorem.

5.3.3 Model as a Pendulum

(5.54)

(5.55)

(5.56)

(5.57)

Springs aren’t the only systems that exhibit Hooke’s law. We will close this section by

introducing the pendulum, the system of a suspended, swinging mass. Say a mass m is

tied to the end of a string of length [ like so

Now, we pull back the mass an angle 6 from the vertical like
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What is the net force on the mass right after we let go?

As always, let’s draw our free-body diagram. The only forces acting on the mass are

gravity and the tension in the string:

As the mass swings back and forth, it travels in a fixed radius trajectory, along the arc of a
circle. Therefore, there must be some centripetal acceleration keeping the mass in this arc.
This suggests that to analyze the forces, we should align an axis with the string and the

other perpendicular to it. So we have

The net force in the direction of the string would be

2

Fr —mgcosf = mUT , (5.58)

as this force is centripetal, and responsible for movement along a circular arc. The force
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perpendicular to this, tangent to the arc, is
—mgsinf = mar, (5.59)

where ar is the tangential acceleration. This is equivalently expressed as

dv dw
mgsin @ = mar moy =mi—-, (5.60)
where we note that v = lw, and w is the angular velocity,
do
= —. 5.61
W= (5.61)

That is, Newton’s law tangent to the arc reduces to

dw d db d*0
—gsinf =l— =l—— =1— 62
gsm dt dt dt dt?’ (5.62)

or that

d?0 g .
ﬁ = —T sm@ . (563)

Written as it is now, this is a bit hard to parse as that sin 6 factor is scary. However, if
6 is a small angle, we can Taylor expand sin # as
dsin 6

sinf =sin0 + 6 +oo=0+---. (5.64)
do |,_

sin 0 = 0, the derivative of sin# is cos#, and cos0 = 1, and so, to lowest order in the Taylor

expansion, sinf ~ 6. Using this, we find that

d*0 g

The angular acceleration, denoted as «, of the pendulum,

20
2’

SH

Q
Il
|

(5.66)

o8

is linearly proportional to 6, and further is a restoring force, because of the negative sign.



Chapter 5. Energy 82

Compare this to Newton’s second law for a spring, where

d*Ax d*Az k
o or that pER —EAx. (5.67)

—kArx=ma=m

Apparently, then, a pendulum is just a spring. Let’s see how this works! (See https:
//youtu.be/2bSgo00ukWY)

5.4 Potential Energy

Over the past several lectures, we have introduced the concept of energy, how it can be
conserved, the work-energy theorem, and the work of a spring. In this lecture, we will
discuss the important concept of potential energy, energy that is stored in an object or

system that can be utilized later to perform some task (remember our definition of energy?).

5.4.1 Motivation From a Spring

A canonical example of potential energy is that stored in a compressed spring. Think about
it: initially the spring is relaxed. To compress the spring and amount Ax, you have to exert

a force on the spring over a distance Ax. Therefore, you did work on the spring.

Force
0000000000, 0000009990,
| | L |
l

| — Az

However, the work you did to compress the spring didn’t change the spring’s kinetic energy
as the spring is still at rest. However, you clearly exerted energy (that is, did work), that that
energy can’t have vanished into the sether. So, where did it go? The work you performed on
the spring transferred to the spring’s potential to do work on another object. As discussed
last lecture, when compressed by an amount Ax, a spring will do work on a mass at the end

of the spring of

1
W= skAa?, (5.68)

where k is the spring constant.
The work you did on the spring to compress it is then stored in the potential ability for

the spring to do an amount of work equal to %kAxQ on an object. More compactly, we say


https://youtu.be/2bSgo00ukWY
https://youtu.be/2bSgo00ukWY
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that a spring compressed by an amount Az has potential energy U equal to
1 2
U= ikASE . (5.69)

If we put a box of mass m at the end of a spring which had potential energy of %/{:AxQ,
then this would be transferred into kinetic energy of the box once the spring returned to its
relaxed length. If we thought of our universe as solely consisting of the block/spring system
with no friction whatsoever, then the only types of energy allowed are the potential energy

of the spring and the kinetic energy of the block. That is, for the system
k

ARG I

| — Az

if it is isolated or closed, then its total energy must be conserved as there is no way for
energy to be lost or gained. Therefore, the sum of the kinetic and potential energy of this

system is constant in time:
1 2 1 5
U+K = §k:Am + S = constant = E, (5.70)

where F is the total energy. Demanding that the total energy be constant in time is typically
vastly simpler for analyzing a problem than using Newton’s second law, even though they

lead to equivalent results.

5.4.2 Conservative Forces

Another thing to note about this spring potential energy is its simple relationship to Hooke’s

law. Let’s take a derivative of U with respect to Ax:

dU 1. dAx?

= — e kA e _FS ring 571
d(Ax) ~ 2" d(Ax) ‘ pring (5:71)
by Hooke’s law. That is, we note that
aUu
Fspring = —kAx = —m . (572)

Forces for which they are related to a potential energy by this negative derivative are called

conservative forces. The name doesn’t connote US political parties, but rather that the
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work done by such a force is exclusively from potential energy decrease (hence the “—” sign).
Conservative forces, well, conserve energy all on their own.

We'll study another conservative force in a second, but it’s important to note that not
all forces are conservative. Perhaps the most familiar example is the force of friction. As we
have discussed, friction can do work on an object to change its kinetic energy, but in doing so,
that kinetic energy is transferred into many different forms of energy (heat, sound, etc.). The
work friction does on an object does not exclusively turn that kinetic energy into potential
energy, like with an ideal spring. We therefore say that friction is a non-conservative

force. For friction, it is not possible to express it as a derivative of a potential energy.

Enough about non-conservative forces for now; let’s get back to conservative forces and
perhaps the most familiar force of all: gravity. First, let’s argue that gravity is indeed
conservative. Well, where does all of the work that gravity does on an object go to? Into
changing the kinetic energy of the object! We can imagine a world without air, friction, etc.,
and gravity would still be doing its thing, keeping thrown balls in parabolic trajectories.
Therefore, we can use the conservative force formula to determine the potential energy of
gravity. Considering the force of gravity exclusively in one dimension (up and down), the

force of gravity is
F,=—mg, (5.73)

when acting on an object of mass m. The corresponding potential energy is found from

integrating from an initial height h; to a final height hs:

h2 h2
U= —/ F,dx = mg/ dx =mg(hy — hy) . (5.74)

h1 hl

That is, the gravitational potential energy is linear in the height difference from the current
position to a reference position.

Unlike the potential energy of a spring, gravitational potential energy can be positive or
negative in sign. This may seem weird, but all that matters are potential energy differences
for determining how gravity affects an object’s kinetic energy. That is, the statement of

conservation of energy for an object of mass m exclusively acted on by gravity is
Lo,
E =mgh + gmv” = constant . (5.75)

where h is the height above a vertical origin point.
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5.4.3 Ball on a Loop-the-Loop

This is still a bit abstract, so let’s consider a concrete, real system in which we can test this

whole “conservation of energy” stuff. What I have in mind is a loop-the-loop set-up:

2R

A ball travels down the ramp and then through the loop, ultimately traveling out, off to the
right. We would like to predict the height A such that the ball stays on the track throughout
traveling through the loop. The radius of the loop is R. We'll test this out once we have a

prediction.

While we won’t solve it this way, let’s imagine that we attempt to solve with Newton’s
second law directly. Where do we even start? We would need free-body diagrams to de-
termine the speed of the ball at the end of the ramp, which is easy enough. However,
imagine the free-body diagrams for analyzing when the ball is in the loop. The direction
and magnitude of the forces on the ball constantly change, so this would be a nightmare to

analyze.
Luckily, we have energy on our side. We simply need to evaluate the initial energy and
the final energy, equate them, and we can solve for height. So let’s do this!

Initially, the ball is released from rest a height A above the ground. Initial kinetic energy

is therefore 0, so the total initial energy is
E; = mgh. (5.76)

Now, if the ball is supposed to reach the top of the loop and remain on the track, two things
must happen. First, the ball has to actually have enough energy to even reach a height of
2R (the top of the loop), but further, if the ball is still on the track, then it is traveling in
a circle. As such, there must be a centripetal acceleration acting on the ball at the top of

the loop. Gravitational force is always there, so, at least, the centripetal acceleration is g.
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If the centripetal acceleration is g, then the ball has a minimal speed at the top of the loop:

2
v 2

Qeent = 15 = 0 or that vo. = Rg. (5.77)

This correspondingly implies that there is a minimal kinetic energy that the ball has at the
top of the loop. This kinetic energy is
1 1

Kmin = §mvmin = §ng . (578)

The ball also has gravitational potential energy, as it has a non-zero height above the ground.

This potential energy is
U =mg(2R), (5.79)

as the ball is a height 2R from the ground at the top of the loop.
So, the total energy of the ball at the top of the loop must be at least

1 5
Etop = Krnin +U = ing + mg(QR) = Eng (580)

By conservation of energy, this has to equal the initial potential energy of the ball a height

h above the ground. This therefore enables us to solve for this minimum height h as

5
E; = mgh = Eyp, = §ng’ (5.81)
or that h = gR. Let’s try this out! Let’s see if the ball indeed stays in the loop if the initial
height is at least 2R. (See https://youtu.be/B5cSCnEyi28)

5.5 Power

We have discussed energy, its conservation, kinetic versus potential, and work, and in this
lecture we are going to tie together some loose ends before moving on. Earlier, we had
discussed the notion of a conservative force, a force for which the work that it does exclusively
comes from expending potential energy. The conservative forces we will focus on in this class
are gravity and Hooke’s law (springs), and we used this idea to determine the height to release

the ball to go around a loop-the-loop. What if there are non-conservative forces in the game,


https://youtu.be/B5cSCnEyi28
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like friction? Conservation of energy still holds, we just have to account for the work done

by the non-conservative forces.

5.5.1 Conservation of Total Energy

Conservation of total energy is simply the statement that the energy measured at an initial

time Fj; is equal to the energy measured at some later time Fy:
E, =FEy. (5.82)

With only conservative forces in the ballgame, this can be restated through a sum of kinetic

and potential energies:
K,+U =K;+Us (conservative forces only). (5.83)

When analyzing a system in which the only forces are gravity and springs, this form of energy
conservation is most useful.

With friction or other non-conservative forces around, some of that initial energy can be
lost to heat, sound, etc., and not manifest as kinetic or potential energy in the final state.
Therefore, accounting for this energy moved from a “useful” form (kinetic, potential) to a
“useless” form (heat, sound), we account for the work that non-conservative forces did in

going from the initial system to the final system:
Ki + Uz + Wnon—cons = Kf + Uf . (584)

Note that energy is still conserved, just not strictly conserved as kinetic and potential energy
exclusively. Also most (all?) work by non-conservative forces is negative; e.g., friction slows
an object. So this implies that, in general, when non-conservative forces are around, initial

kinetic and potential energies are larger than their final values.

5.5.2 Differential Energy Delivered

Another key concept with energy is power, or energy used or delivered per unit time. At

its simplest, power P is just the time derivative of the energy of some object:

_dE

P=—.
dt

(5.85)
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A single object like a car, horse, plane, etc., is not a closed system, so its energy does not
need to be conserved; that is, it can change in time. In our everyday experience, it is power
that makes a task challenging. Expending a lot of energy very quickly is more difficult than
expending the same energy more slowly.

Let’s derive another relationship of power using the work-energy theorem. The work-

energy theorem states that

b
AE:/ Fdx, (5.86)

that is, the energy of an object (spring, car, apple, etc.) changes if a force is applied over

some distance z € [a, b]. Differentially, this relationship is
dE = Fdz. (5.87)

Now, to relate this to power, we just divide by the infinitesimal time dt on both sides. (Nota

Bene: I am not a mathematician, so questionable manipulations with infinitesimals are all
cool!) That is,

dE dx

= P=F==F 5.88

dt at (5.88)
or, that power is force times velocity. Now, I've been working in one dimension, so to

generalize to multiple dimensions, we need a dot product between force and velocity:
P=F. 7= Fuvcosf. (5.89)

The units of power in SI are called Watts, after James Watt who invented the steam
engine. A Watt is, not surprisingly, one Joule of energy per second, both SI units them-
selves. Another unit of power you might have heard of is horsepower, which interestingly
was introduced by James Watt to compare the output of his steam engines to draft horses.
The “horsepower” used in the United States for car energy output, for example, is 745.7
Watts.

5.5.3 Feasibility of Solar Power

Now, with this definition of power, I want to estimate the total power that is accessible from

the sun on Earth. Solar power is increasingly becoming an important renewable resource,
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providing energy to us to charge our phones, run our trains, or heat our lecture halls. In
this section, I want to estimate the possible solar power that we can harness on Earth.

First, I will tell you a couple of things. The power consumption of the entire Earth is
about 10 Watts, 10 TeraWatts. That means that every second, 10'® Joules are needed for
everyone on Earth to heat their homes, run their Teslas, or cook their dinner. So, we're
going to attemp to answer the question of whether solar power can account for these 103
Watts.

The amount of power from light emitted by the Sun incident on Earth is about 1000 Watts
per square meter. That is, when the Sun is directly overhead on a clear day, 1000 Joules of
light energy hit a square meter of ground every second. For some context, a standard light
bulb in your house might use about 60 Watts of power to run. (LED bulbs use much less
power for the same light output, though.) So, as a first step in getting to our answer, let’s
consider how much solar power is incident on Earth at any given time. The trick to answer
this is to introduce the notion of cross-sectional area. The sun shines light on Earth, and

the cross-sectional area is the size of the shadow that the Earth casts:

P
- o
&
— /
= l/ ]RE
_— S
Sun & \ Earth
— = AN
.80
S,
~

The size of Earth’s shadow is equal to the area of a circle with Earth’s radius; this is called
the cross-sectional area because if you cut Earth in half (i.e., made a cross-section), the area

of the surface you opened up would be
Area = TR, (5.90)

With the radius of the Earth Rz ~ 6000 km = 6 x 10° m, the cross-sectional area of Earth

1S

Area = 7(6 x 10°)? m? ~ 10" m?. (5.91)
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Again, as with everything in this game, orders of magnitude are sufficient. Using this result
to find the total solar power incident on Earth, we multiply this area by the 1000 W/m? to
find

P =1000 W/m* - 10" m? ~ 10" W. (5.92)

This would seem to be totally enough to power all of Earth, with orders of magnitude to
spare. But, there’s a catch. To capture all of this power, we would have to cover the entire
Earth in solar panels, the sky would always have to be clear, and solar panels would have to
be 100% efficient. But none of these are true, so we need to incorporate realistic numbers in
an estimate.

First, the efficiency of commercial solar panels is about 10%. That is, for an incident
power P on a solar panel, only about 1/10 of that power can actually be turned into electricity
to power a toaster. So, out of the 10" W of solar power incident on Earth, we can only
extract about 10'® W for our use.

Now, we can’t really hope to cover the ocean with solar panels. Oceans cover about 70%
of the Earth’s surface, or land is only about 30% of Earth’s surface. Further, clouds cover
about 70% of Earth’s surface at any given time, so of the 30% that is land, only about 30%
of it has a clear shot of the sun. 30% of 30% is about 10% again, so restricting solar panels
to be on land means that there is only about 10> W of power for our use.

Continuing, we can’t actually cover all land with solar panels. If we did, no light would
hit the ground, so there would be no farms, no forests, no fields. However, we could imagine
that, say, a solar panel was installed on the roof of every building on Earth. This eliminates
or at least minimizes the further footprint on the environment. As an estimate of the area
of roofs on Earth, the total fraction of land area that is urban is about 3%. Of course, all
of an urban area isn’t just roofs, so perhaps a tenth of urban areas could be covered in solar
panels. Including this factor of about 0.3% or 3/1000, the total area where solar panels could

be reduces the total solar power accessible to use to about
Pilar = 3 x 102 W . (5.93)

There may be further constraints on the total solar power that can be harnessed, like infras-
tructure issues, but even now, we have fallen below the level of covering all power needs of
Earth. Solar can’t be all if we are to divest energy consumption from petroleum to renewable

sources.



Chapter 6
Gravitation

In this chapter, we are going to create a theory of gravity that generalizes our simple discus-
sion of a uniform force, universally pulling objects toward the ground. This theory that we
will create will subsume our constant accelerating gravity, and explicitly predict when that

assumption breaks down.

6.1 Derivation of Universal Gravitation

To construct this theory of gravity, we will imagine placing two objects of mass m; and msy

a distance r apart:

We would like to determine the force of gravity from mass 1 on mass 2, ﬁg,lz. Note also that
we assume that these two masses are balls, but we will actually work in the approximation
that they are points, and have no spatial extent. If point masses make you uncomfortable,
then equivalently we work in the limit in which the distance between the objects r is much

larger than either of their individual radii:

r>Tr,Tre. (6.1)
91
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6.1.1 Universal Attraction

The gravitational force on 2 by 1 is a vector, so we need to determine both its magnitude and
direction. Let’s start with the direction. Gravity is a universally attractive force, meaning
that two masses are always attracted to one another via gravity. Specifically, in the case at

hand, the direction of the force on mass ms points toward m;:

Fy12
—

Now, with this particular alignment, F;lg = —F, 120, where Fj, 15 is the magnitude of ﬁgﬂ.
However we can orient our axes to describe the positions of the two masses however we want.
A convenient orientation is with m; at the origin and ms an angle § above the horizontal,
when projected on two dimensions:

4

.- -7 9
............................................ 'S
With this orientation, the gravitational force is
ﬁg712 = —Fg712 (COS 01 + sm@j) . (62)

Regardless of 6, the gravitational force vector points toward the origin, along a line that
emanates from the origin. Such lines are nothing more than radial lines (they “radiate”
from the origin) and we denote the vector with unit length that points along a radial line as

T

7 =cosfi+sindj. (6.3)
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Another way to say this is that there is a rotational symmetry about mass m,: rotating
mass meo any angle about m; leaves the magnitude of gravitational force the same, and just
rotates its direction to always point toward m;. Thus, the gravitational force is

F,

g12 = —Fy1or. (6.4)

6.1.2 Inverse Square Law

Okay, we have the direction; what about magnitude? In general, as they are given quantities,

the gravitational force could depend on distance r and the masses mq, mo via
Fy12 = Fya(r,my,ma) . (6.5)

Let’s focus on the distance dependence first.
We live in three spatial dimensions, which may be obvious, but is extremely important
for determining the dependence on r. We will work by analogy here, first imagining a light

bulb hanging out in space:

This light bulb emits light in all directions uniformly. Let’s imagine putting the bulb inside

a sphere of radius r; and ry with ry < ro:

@
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How does the total amount of light that is captured by the two spheres compare?
(a) Sphere 1 more light (b) Sphere 2 more light (c) Same amount

The bulbs in both cases are identical, outputting the same amount of light and both
spheres capture all of the light from the bulb. Therefore, they capture the same amount of
light.

However, imagine that you are sitting on the interior surface of the spheres. In which

case would the bulb appear brighter?
(a) Sphere 1 is brighter (b) Sphere 2 is brighter (c) Same brightness

Now, your eye is not like the sphere; it does not capture all of the light emitted by the
bulb. Your eye only captures the light that hits a very small region. The amount of light
that hits a given small region of the sphere is controlled by the total amount of light from
the bulb divided by the surface area of the sphere, the light per unit area. The surface area

of a sphere is
A= dnr?, (6.6)

where r is its radius. Thus, the light per unit area for the two sphere is

L L L L

= = = 6.7
Ay Amr? Ay Amrd’ (67)

where L is a measure of the total amount of light from the bulb. Because ro > rq, the light
per unit area for sphere 2 is smaller than for sphere 1, so you perceive the light in that case
as dimmer. Note that the perceived brightness follows an inverse square law: if the radius
of the sphere doubles, the perceived brightness decreases by a factor of four.

Now, let’s take this observation to understand gravity. Our universe with mass 1 and
mass 2 is still three-dimensional, and as we have emphasized throughout this class, forces
always have some agent. Let’s hypothesize that this agent for gravity is similar to the light
from the bulb. That is, the total effect of gravity from mass m, is constant and only depends
on properties of mass m. However, the density of the agent that exerts gravitational force
on mass my, like the light, would decrease like 1/72. Thus, with this hypothesis, the force of

gravity would also follow an inverse square law:

1
Fg,lz(’f’, m17m2) = ﬁ M(mb mz) ) (6-8)
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where M (mq, my) is a function purely of the masses my, ms.

Again, in science we don’t need to answer “why?” for every question to make progress.
We can hypothesize and test our hypothesis and learn something about the universe. We
don’t need to answer the question of what the gravitational force agent is to test our theory

of gravity.

6.1.3 Linearity in Masses

Now, let’s figure out the mass dependence of the gravitational force. We use the equivalence
principle, so gravitational mass and inertial mass are equivalent and just “mass.” Mass is a
measure of how much “stuff” an object is constructed from (I don’t know what “stuff” is,
however). So, we will answer the question of how the amount of stuff affects gravity.

To proceed, we will additionally assume that the effects of gravity are linear: that is, the
net gravitational force on an object by two objects is simply the sum of individual forces.
We will use this in a second. First, let’s imagine that ms = m; = m, some basic unit of

mass. Then, from what we have constructed above, the gravitational force in this case is

1 2

M(m,m
= Fg,12 — %

r

Now, let’s imagine making m; = 2m, keeping my = m. We can visualize this as

1 2

where we have imagined putting two blocks of mass m each at the location 1. By linearity
of gravity, to find the force on mass 2, we can sum together the gravitational forces of the
blocks individually:
M(m,m M(m,m 2M(m, m
Fg’12 — ( ) + ( ) — ( ) . (69)

72
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Note that we don’t have to worry about vector addition because we assume that the blocks

are at the same point.

Continuing, let’s imagine that m; = 3m and my = 2m:

Using the linearity of gravity, what is the force on my?

(a) Fyaz = w (b) Fyaz = 6Msgl’m) (c) Fya2 = —ZM(?fg’m)

If mq = 3m and my = 2m, then there are a total of 6 pairs of masses in which one comes
from m; and the other in the pair comes from ms. 6 is simply the product of the relative

masses of my and ma:

2
mimy _ 3m2m _ o (6.10)
m m m m

So, generalizing, if m; = Nym and mo = Nom, where N; and N, are positive numbers, the

gravitational force on mass 2 is

Ni{NoM
Fpig= —2 z(m’ m). (6.11)
T
or we can express it as
G
Foi2 = —N:Zlmz ; (6.12)

proportional to the product of masses m; and ms.

G is a constant of proportionality, called Newton’s constant, to ensure that units are

correct. With force having units of kg m/s?, the units of Gy are

F 2
(Gy] = {_7;1 — MLT2I*M~2 = M~ 372, (6.13)
m



97 6.2. Gravitational Potential Energy

or in SI, [Gx] = kg 'm3s™2. Thus, the force vector between two masses is

- G
Fpp =12 5 (6.14)

This is called Newton’s universal law of gravitation. The value of Newton’s constant is
Gy = 6.67 x 107" kg™'m?®s2, and this sets the strength of the gravitational force between
two masses. If this value were larger, the force would be larger, and if it were smaller, the
force would be smaller. The fact that it is of order 107! in SI units means that the strength
of gravity is very weak. The entire mass of the Earth pulls you down, but you can still jump

up, off Earth, using your measly legs!

6.2 Gravitational Potential Energy

Let’s now move on to studying gravitational force in another way, to expose the energy that
it can store. This will also segue into one of the most mysterious objects in the universe.

Let’s attempt to address the question of how much energy it would take to blow up the
Earth? Now, this isn’t some fatalistic take on today’s society, we want to determine the
amount of energy it takes to completely pull apart every rock, every atom of Earth. Earth
is held together through the gravitational force of its constituents, so to pull Earth apart,
we need to do work against gravity to do this. Note that the range of the gravitational force
is infinite: as long as the distance r between to massive objects is not infinite (r < 00), then
their gravitational force is non-zero. So, to completely blow up the Earth, we need to pull
all of its atoms apart an infinite distance from one another. This is a really tall task, so we
will simplify our picture of the Earth to analyze this.

Our model of the Earth will be the following: two masses m; and msy separated by

distance 7:

Okay, okay, so not very realistic. However, if r is about the radius of Earth and m; and ms

are about half the mass of Earth, then by analyzing this system, we will be able to determine
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how much energy it would take to break Earth in two pieces. If we did that, I might claim
victory.

Okay, to separate the masses, we need to do work against the force of gravity. What we
will imagine doing is pulling mass ms from a separation of r with mass m; to a separation
of oco. We will just pull mass ms to the right to do this, which is opposite to the direction of

gravitational force:

Fg Fpull
If we pull such that m, travels at a constant velocity, then | Fiyn| = |F|, and we can determine

how much work we would need to do to accomplish this. We do work from a distance r to
a distance oo, pulling in the direction of motion with a force equal in magnitude to the

gravitational force. That is, the work we need to do to separate the masses is

> > S * Gymim Gymims |~
W:/ Fpuu~d77’:/ \ngdr’:/ %dﬂ:—% (6.15)
_GNm1m2
— P,

To do the integral of dz/x?, note that the derivative of 1/x is

%i = %ml =—a 2. (6.16)
Therefore, the anti-derivative of 272 is —2~!. The work we had to do to separate the masses
is still proportional to the product of their masses, but now only inversely proportional to
their initial separation. The closer they are initially, the harder it is (the more work we have
to do) to separate them.
Now, gravity is a conservative force as we discussed, so if we did this much work, then the
opposite of this was initially stored as potential energy. That is, the gravitational potential
energy of two masses m; and my separated by distance r is

Gymime

U=-— (6.17)

r

Note the — sign: it takes energy from us to separate the masses. With this gravitational

potential energy, we can do everything we usually do with energy. And, remember, energy is
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a scalar (it has no direction), so it is easy to find total energies of multiple masses interacting

gravitationally: we simply sum them up.

6.2.1 Escape Velocity

A related question to blowing up Earth is the following. How fast would you have to
throw a ball upward, away from Earth, such that the ball ended up traveling an infinite
distance from Earth? Within the context of our old model of gravity as a constant force,
this was impossible, because constant force means eternally non-zero acceleration, so any
finite velocity would eventually stop and reverse. For inverse-square gravity, we can travel
fast enough to get out of the gravitational pull of Earth. We say that we have “escaped
BEarth’s gravity” and the initial velocity needed to do this is called the escape velocity.
To determine the escape velocity, we are going back to our model of two masses m; and
mo. Now, however, we are going to give mass msy an initial velocity ¢ pointed away from

mass my:

<L

How large must || be for my to escape my’s gravity? We can solve this with conservation

of energy. Initially, the masses have a gravitational potential energy of

G
Ui _ N1 ’ (618)
r
and the mass my has kinetic energy
1 2
K; = gmav”. (6.19)

The total initial energy of the system is then

Gymim 1
Etot = UZ + Kz = —M + §m202 . (620)
r
Now, when ms has escaped my, it is infinitely far away, so there is no gravitational

potential energy, Uy = 0. Further, if mass my juuuuust makes it out there, its final kinetic
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energy is 0 (no velocity). That is, the final total energy is 0, Eyy = 0. Setting initial and

final energies equal, we have

e 1
_ N2 Smav? = 0, (6.21)
.

2
SR s Lo — (6.22)
T

where ves is the escape velocity. Setting the mass m; = Mgan and r = Rgann, the escape

or, solving for v, we find

velocity from the surface of the Earth is

\/ZGNMEarth \/2 -6.67 x 1011 -6 x 1024
Vesc — ~

6% 10° m/s ~ 12 km/s ~ 25,000 mph. (6.23)

Rgarth

Note that escape velocity depends on the initial distance from the gravitating object.
What we derived above was the escape velocity from Earth’s surface. If you are farther
away from Earth when you start, then the velocity you need to escape Earth’s gravity is
correspondingly less. For example, the probes Voyagers 1 and 2 were launched from Earth
in the 1970s with speeds much less than what would be needed to escape the gravitational
force of the Sun, from a radius of the orbit of Earth. As they traveled through the solar
system, they were able to get energy kicks from orbits around Jupiter, which pushed their
velocities past the escape velocity of the Sun, at a radius of Jupiter’s orbit. Voyagers 1 and
2 are just two of only five artificial objects that have attained solar escape velocity and have

left the solar system.

6.2.2 Black Holes

For the last part of this chapter, let’s throw this escape velocity idea on its head. While
not a topic for this class, you might know that the speed of light in vacuum is an ultimate,
universal speed limit. Nothing can travel faster than light. The speed of light is typically

denoted as ¢ and in SI units is
c=3x10°m/s. (6.24)

Imagine that there was a massive object whose escape velocity was ¢ = veg.. This would
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mean that not even light, traveling as fast as possible, could ever escape the gravitational pull
of the object. I should also say that the manipulations I am going to do now are questionable,
but give the right answer, so we will use them to provide insight into properties of such a
massive body. Let’s say this massive body has mass M and radius R, and we assume that

its escape velocity from its surface (at radius R) is ¢. That is,

2GNM
=4/ . .25
¢ R (6:25)

We can solve this instead for escape velocity ¢, for the radius R, where

2GNM

5 .

R=

(6.26)

C

The interpretation of this distance is the following. If a mass M is entirely contained within

a sphere of radius

2GyM
= 62

R : (6.27)

then the escape velocity from the surface of that sphere is the speed of light, ¢. As not even
light can escape this mass, it is called a “black hole,” a term introduced by John Wheeler.
This point should be emphasized. There is no black hole at the center of the Earth,
because all of Earth’s mass is not concentrated there. This radius for a given mass M is
called its “Schwarzschild radius,” after Karl Schwarzschild, a German physicist who first
derived it, literally in the foxholes of World War I. For the Earth’s mass of 6 x 10** kg, its

Schwarzschild radius would be

2G Ny Mg,
Ry = — "0 ~ 9 mm . (6.28)
c
That is, if all of Earth’s mass were contained within a sphere of radius 9 mm, then it would
form a black hole. You could hold it in your hand, but the gravitational force would be so

strong you would quickly be sucked into it!
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Chapter 7
Momentum

We will leave gravitation for now, and introduce another conservation law. Let’s start with

Newton’s second law for a single object or particle of mass m:

—

Fnet — maj (71)

Now, as a single entity, we are also going to imagine that the mass cannot change, that is,
the object can’t gain or lose mass. Parts of it can’t fall off and nothing can stick to it. With

this assumption, we can re-express Newton’s second law as

. d’r  d dzr d dp
Fos=md=m— = — — | =—=(mv) = —. 7.2

CEMEE e T g (m dt) 7" = g (7.2)

We call p’ the momentum of the object, but for now it is simply a placeholder name for the

quantity mv = p.

7.1 Conservation of Momentum

Written in this form, however, Newton’s second law has a nice interpretation: if ﬁnet =0,
then the time derivative of momentum p'is 0, or that momentum does not change in time.
That is, if Fhow = 0, then the particle’s momentum is conserved. While this sounds profound,
at this stage it is nothing more than the statement that if there are no forces, then there is

no acceleration, so the particle’s velocity is unchanged in time.
103
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7.1.1 Impulse

Just like we did when introducing work and energy, we can anti-differentiate Newton’s second
law to determine the change in momentum from a force that acts over time. Recall that
work is from a force that acts over a distance, while we call impulse the effect of force acting

over time. We can integrate Newton’s law over time:

to d—’ to .
/ —pdt:/ Fo dt = AR, (7.3)
t1 dt t1

where Ap'is the change in the momentum from time ¢; to time ¢5:

Ap = pl(ty) — plts) - (7.4)

We might call this the “impulse-momentum theorem,” in analogy to the work-energy theo-
rem, but that is not typically used.

One final point before moving on is that as we are currently considering a localized,
isolated object, we imagine that it effectively has no extent. On a free-body diagram, it is
but a point, so all of its mass m is localized at its position #. The point at which mass is or
can be integrated to be localized is called the center-of-mass of the system. We’ll need this

idea shortly.

7.1.2 Systems of Particles and Center-of-Mass

Okay, enough of one particle, let’s imagine we have a system of two particles of mass m;
and mo and we want to determine that system’s dynamics with Newton’s second law. The

set-up is

and we give the masses some velocities v and v,. We can write down Newton’s second law

for each mass individually, where

= dpi = dps
Fnet1:_7 Fnet2__

7 o 2= (7.5)
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Note that the net forces on mass 1 may include forces exerted by mass 2, and vice-versa, if,
for example, gravity is a relevant force. However, by Newton’s third law, every force that 2
exerts on 1 has an equal and opposite partner of 1 exerted on 2. So, if we consider the total
system of masses 1 and 2 together, then the only forces that affect the system are external

to the two masses:

— d N N = —
Fext = %(pl + p2) = Fnet,l + Fnet,Q . (76)

Apparently, if there are no external forces, then the sum of the particle momenta is conserved.
Forces only exerted between the particles do not affect the total momentum, by Newton’s
third law.

Let’s keep going and attempt to interpret what the sum of momentum is. Again, assuming

for simplicity that the individual particle masses are constant, we have

P1+ Do = MU + maty = %(mlfl + mads) . (7.7)
Then, the term in parentheses is the mass-weighted position of the particles. Apparently,
if there are no external forces, then there is no acceleration of this mass weighted position.

Let’s go a bit farther, multiplying and dividing by the total mass:

d (mlfl + m2£’2> (7 8)

D1 +ﬁ2:(m1+m2)% ——

Now, the quantity on the right is called the center-of-mass and is the location at which
all of the mass of the system can be imagined to be localized, for the purpose of where the
external forces act. We denote this is

. mlaj“'l + mng
Lem —_— .

7.9
my + Mo (7.9)

Note that if m; — 0, then all of the mass is confined to be at mass 2, so T, = 7o (and

similar if my = 0). So, another way to express the sum of momentum of the two particles is:

dZem

dt

pi+ P2 = (m1 +ma) = (m1 + m2)Uom , (7.10)

where U, is the velocity of the center-of-mass. Then, Newton’s second law can be re-
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expressed as

—

Fext = (ml + m2)c_icm ; (711)

where d.,, is the acceleration of the center-of-mass. That is, if there are no external forces,
then the center-of-mass does not accelerate.
For a system of many particles, the story is the same, we just need to sum over all of

their individual momenta. In that case, Newton’s second law for a system of n particles is

Foot = Gom ; m; = % (; @.) : (7.12)

where

Zmi:ml—f—mz—f—----l-mn, Z@:ﬁ1+ﬁ2+'“ﬁn' (7.13)
i=1 =1

We believe that there is nothing external to our universe, so necessarily there are no net
external forces on our universe, let,umverse = (0. This then implies that the sum of the
momenta of all particles in the universe is conserved, unchanging in time.

Now, to say that the center-of-mass does not accelerate does not mean that individual
particles cannot move when there are no external forces. For example, let’s consider a couple
different configurations of particles. First, let’s assume that masses m; and ms are identical
and equal to m. What is the velocity of the center-of-mass if 7 (t) = —Z»(t), for all t7 Well,

we find this by simply plugging this into the expression for the center-of-mass:

- mi"l +m:f2

Tem (Zfl + (-fl)) =0. (714)

1
m+m 2
The masses can move, but the center-of-mass does not. An example of such a system would

be two masses connected by a (massless) spring:

1 2

R 0009909900,

We can compress the spring and the masses will just oscillate back and forth, with Z(t) =

—T5(t), but won’t be drifting anywhere in space. Correspondingly, if the center-of-mass

doesn’t move, then the net momentum is 0.
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7.1.3 Spatial Translation Symmetry

While this configuration had no net momentum of the center-of-mass, we had discussed some
time ago that there is no such thing as absolute velocity, so we could imagine this mass-
spring system moving by at constant velocity and there still be no net forces. However, now
in this case there would be a non-zero momentum of the system because the center-of-mass

moves. This observation connects to the Noether’s theorem interpretation of momentum.

If there are no external forces on our system, then the net momentum of the system
is conserved. By Noether’s theorem, if momentum is conserved, then there should be a
corresponding symmetry under which the system of objects/particles is unchanged. As
discussed, the net momentum of a system is intimately related to the motion of its center-
of-mass, Z.n. The center-of-mass is some position in space and to move the center-of-mass
requires spatial translation. For example, if the center-of-mass is initially at Z.,, = (1 m)i

and we want to move it to T, = (2 m)?, then we need to translate one meter to the right.

We know how to do this translation: we simply give the system a non-zero momentum and
the center-of-mass will move. The statement of conservation of momentum means that, by
Noether’s theorem, we can more the center-of-mass anywhere, and the physics of the system
is unchanged. That is, if our system is invariant (= unchanged) to any spatial translation,
then total momentum is conserved. This is, correspondingly, Noether’s theorem for spatial

translations.

Momentum conservation, like energy conservation, is typically much easier and more
useful to directly use than Newton’s second law to analyze the dynamics of a system. When
only internal forces are relevant, i.e., force between objects in the system and no forces from
the outside, momentum is conserved, and this is typically what is relevant for collisions
analysis. Indeed, in my research which studies the collisions of protons at high energies,
momentum conservation is extremely important for constraining the physics that may have

been produced. We'll discuss more about collisions soon.

We argued that if energy is conserved, the laws of physics are independent of time.
Correspondingly, if momentum is conserved then the laws of physics are independent of
spatial position. Independence of time or position means that the derivative of the laws of
physics with respect to these quantities is zero. Let’s denote the laws of physics compactly

as S. Conservation of energy means that

d
Z5=0, (7.15)
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and conservation of the momentum vector means that

d d d

@S = d_yS = ES =0. (7.16)
“Laws of physics” isn’t just a simple function, as S must encode the motion and interactions
of all particles in the universe. As such, S is a function of all the particles’ trajectories,
which are themselves functions of ¢, x, y, and z. We refer to S as the action and it is not
just a function, but a functional. The statement that, for example, dS/dt = 0 means that
the value of the action, as encoding the laws of physics, is independent of when in time all

particle trajectories are measured from.

7.2 Collisions

We've now introduced conservation laws for energy and momentum, which, by Noether’s
theorem, correspond to symmetries under temporal and spatial translations, respectively.
These conservation laws are especially useful for analyzing collisions to two objects, such as
two balls, cars, bouncing a ball on the ground, an asteroid hitting a planet, two galaxies
colliding, etc. Sorry for getting a bit carried away, but collisions are a very general physical
phenomena, occurring essentially in any imaginable physical system. It’s amazing that the
very simple, yet enormously profound, ideas of conservation of energy and momentum are
basically all we need to completely analyze any collision. Further, only using the principles
of conservation of energy and momentum to analyze any collision is an extremely strong test

of those fundamental ideas.

7.2.1 Elastic and Inelastic Collisions

So, with that prologue, it is useful for us to determine a taxonomy of different types of
collisions, based on the relevant conservation laws. To set up, we will imagine colliding two

objects of masses m; and my with initial velocities 7;; and ;o

Then, the masses collide, and after the collision, the masses have velocities vy, and ¥y
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First, as we have just discussed, if only forces internal to the mass 1-mass 2 system act on

the masses, then momentum is conserved:

—

Foti=0 = m117i,1 + mzﬁi’g = mlﬁ}gl —+ mgﬁf’g . (717)

Energy is always conserved, but the expression of energy might be useless or irrelevant for
the collision of the masses (sound, heat, etc.). So, constraining to useful forms of energy,
potential and kinetic, kinetic energy is conserved in the collision if only conservative forces

act on the masses:

- 1 1 1 1
Fron-cons = 0 = §mlvzl + §m27}l’272 = levfﬂl + §m27j}2c72 . (718)
Now, we can consider the four possible force combinations and give names to different types

of collisions:

Fnon-cons = O Fnon-cons % O
o Momentum & Kinetic Energy Conserved Momentum Conserved
o “Elastic Collision” “Inelastic Collision”
- Neither Momentum nor
Fext #0 Kinetic Energy Conserved o
Kinetic Energy Conserved

For analyzing a collision system, it just requires you to determine the relevant forces of
the system to determine which conservation laws to use. We will mostly focus on elastic and
inelastic collisions in this part of the course, as we are currently interested in momentum
conservation. However, with Newton’s second law or just conservation of energy, we had
analyzed collisions of the Fig # 0 type in previous lectures. For example, if friction is a
relevant force, it is external to the colliding objects and non-conservative, but we know how
to deal with it.

7.2.2 K-T Extinction Event

Let’s now take these ideas and analyze a particularly profound collision event in the history

of Earth: the Cretaceous-Paleogene extinction event or the Cretaceous-Tertiary extinction
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(K-T) that eliminated more than about 75% of extant life on Earth. The current widely
accepted theoryE] for this mass extinction event was the impact of an asteroid at what is now
the Yucatan peninsula about 66 million years ago, called the Chicxulub crater.

We will use the ideas of momentum conservation, energy conservation, and our theory
of gravitation to determine the energy released by the asteroid’s impact on Earth. Initially,

before impact, the Earth and asteroid are in space as such:

()

U;p =0

We will assume that the Earth is at rest with respect to the space in which the collision
occurs (the solar system). This is of course not strictly true, because the Earth is orbiting
the sun, but we can imagine that the velocity of the asteroid is perpendicular to the velocity
of Earth (i.e., radial toward the sun), so Earth’s velocity is not relevant for the collision.

With this set-up, the initial momentum of the Earth-asteroid system is

Pi = Di,g + Pi,a = M4, (7.19)
and the initial kinetic energy is
1 2
K, = Kz‘,E + Ki,A = gmAvi’A . (720)

Now, what happens after the collision? The asteroid becomes embedded in the Earth, as

such

'Luis W. Alvarez et al., “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction”, Science 208,
1095-1108 (1980); Smit, J., Hertogen, J., “An extraterrestrial event at the Cretaceous-Tertiary boundary”,
Nature 285, 198-200 (1980).
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- D

and now the Earth and asteroid travel with a common velocity ¥.

Because the asteroid is stuck to Earth, there must be some “sticky” force responsible for
attaching the asteroid to the Earth. This sticky force is entirely internal to Earth and the
asteroid, and there are no relevant external forces present, so, by our taxonomy, momentum

of the Earth-asteroid system is conserved. That is, the final momentum is
ﬁf :ﬁf,E ‘I’ﬁﬁA = (mE+mA)27f :mAl_);', (721)

where we have simply called 7; 4 = v;.

In contrast with momentum conservation, the sticky force is not conservative, as there is
no well-defined potential energy ascribable to the sticky force. This is exactly analogous to
the real, familiar force of sticky tape: it is definitely a force as it can accelerate objects or
support them against gravity, but has no potential energy, in the same way that friction does
not. Therefore, kinetic energy is not conserved in this collision. However, it will be useful
later to determine how much kinetic energy was lost, so we can evaluate the final kinetic

energy as
1 2
Kf:Kf7E+Kf7A:§(mE—I—mA)Uf. (7.22)

To continue, we will assume that the collision only happens in one dimension, so we can

drop the vectors in conservation of momentum. Then, the final velocity of the Earth-asteroid

system is
ma

_ ) . =2 . 7.23
(mp + ma)vy = mav or mE+mAU (7.23)

Then, the final kinetic energy of the Earth-Asteroid system is
Ky = Smp 4 ma = a2 (7.24)

= —(mg+ma)v; == .
! 2 E AVTS 2 mg +my
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From one perspective, we are done: given the masses of the Earth and the asteroid and the
initial velocity of the asteroid, we can determine the final velocity of the system. However,
I want to go further. Because the “sticky” force that embeds the asteroid in Earth is
non-conservative, kinetic energy from the asteroid initially is lost in the collision, as heat,
explosion of rock, deafening sound, etc. So, how much energy is released in this asteroid

collision?

The energy released in the collision is simply the difference between the initial and final

kinetic energies of the system:

1 m? 1 mgm
Erel:Ki_Kf:_maUQ_ 4 ;= rA ;

1
' S I 7.25
2 ! 2mA+mEvl 2mg +ma ( )

i

The mass factor that appears in the final expression for the energy released is called the

reduced mass and is denoted as

mgmma
= —. 7.26
L (7.26)
So, we can equivalently write the released energy as
1 1
2mE+mA mg +ma 2 Mg + My

where K; is the initial kinetic energy of the asteroid.

What could this kinetic energy be, or rather, where did the astroid get this kinetic energy
from? From the gravitational force of the Sun on the asteroid! To estimate the kinetic energy
of the asteroid right before it hit Earth, let’s imagine that it started from rest very far away
from the Sun. Then, its initial energy would be 0: no kinetic energy and no gravitational
potential energy. However, right before it hit Earth, it would have gained kinetic energy
from losing gravitational potential energy by getting closer to the Sun. Its total energy must
still be 0, and so

GnMomy 1

+ —mAvf , (7.28)

KZ' = =
U, + 0 - .

or that the initial kinetic energy is

1 Gy M,
K, = ~mgp? = “N2ema (7.29)
2 TE@
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where My, is the mass of the sun and rgg is the radius of Earth’s orbit around the Sun. So,

the energy released by the asteroid hitting Earth is

mpg GNMQmA

rel —

(7.30)
mg +my TE®

Now, we need to estimate the mass of the asteroid, my4. It is estimated that the diameter
of the asteroid, inferred from the Chicxulub crater’s size, was about 10 km. This is about a
factor of 1000 times smaller than the size of the Earth. The amount of mass (= stuff) in an
object is determined by its volume, which is proportional to the cube of the diameter. So,
if the asteroid has a diameter that is a thousand times smaller than Earth, then its volume
is smaller by the cube of this, or a factor of one billion. So, we estimate the mass of the

asteroid to be a billion times smaller than the mass of the Earth,
ma~ 10" "my . (7.31)
With this identification, the ratio factor in front of the released energy is very nearly just 1:

=1-10"7+4---, (7.32)

mp +my 1+Q";—g”1+10—9

using the binomial expansion. So, for our estimate, we will just set it to 1.

The energy released by the asteroid is then

GnyM
Erel ~ NZomA ) (733)
TE®
where the values of the factors in this expression are:
Gy = 6.67 x 107" kg™ 'm?s ™2, My =2 x 10 kg, (7.34)
ma =~ 10" "mp ~ 6 x 10" kg, Tpe = 1.5 x 10" m. (7.35)

Plugging in these numbers, we find that the energy released in the asteroid collision to be
B rb5x10% 7. (7.36)

This is an exceedingly large amount of energy, enough to wipe out most life on Earth. It is

estimated that Mt. St. Helens released about 10'® J of energy in its explosion in 1980. The
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asteroid that created the Chicxulub crater would have been like a million Mt. St. Helens

events simultaneously.

7.3 Conservation Laws in Multiple Dimensions

We will continue our discussion of momentum conservation, focusing on momentum conser-
vation in multiple dimensions. Again, for a system of n particles or objects, we can write

Newton’s second law in terms of momentum as

- d < d

Fex:_ _;:_ 3 p: _‘n y 7.37
t dt;p dt(p1+p2+ + D) (7.37)
where p; is the momentum of particle ¢ and Fiy is the sum of forces external to the n

particles. If there is no relevant net external force, then the time derivative of the sum of

momentum is 0:
d n
Foa =0=—> fi, (7.38)
or that the sum of momentum is conserved, unchanged, in time:

Zﬁi = constant . (7.39)

i=1

This is a vector equation, so the sum of each component is conserved individually if
ﬁext =0

n n n
Zﬁ” = constant, Zﬁ;y = constant, Zﬁ” = constant , (7.40)
i=1 i=1 i=1

where p; ., piy, and p; , are the x-, y-, and z- components of the momentum of particle ¢,
respectively. We had previously exploited momentum conservation to analyze collisions that
exclusively occurred in one dimension; in this lecture, we will study the constraints that
momentum conservation in two dimensions imposes on systems with multiple particles. We
will focus on two dimensions rather than three dimensions because going to three dimensions

mostly just adds complication and additional bookeeping.
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7.3.1 Simple Model of Neutron Decay

To set the stage for this lecture, I'd like to study the physics of the Reed reactor. How many
of you work at the reactor, or are in training? How many of you even applied to Reed in
part because of the reactor? How many of you are familiar with the reactor at all? Like
any nuclear reactor, the Reed reactor is powered at its core by a radioactive element that
decays to other particles after a characteristic time called the half-life. The Reed reactor
uses plutonium as its core, but the amount of plutonium is tiny and is much too small to
output a useful amount of energy, or to ever be a threat to campus. Nevertheless, there is
very interesting physics in nuclear decays, and in this lecture, we will explore one aspect
through momentum conservation.

A complete, or even simply honest, discussion of nuclear decay requires concepts of both
special relativity and quantum mechanics, but we’ll be able to simplify our discussion enough
to not need their details. Fundamentally, nuclear decay is a consequence of the decay of the
neutron, one of the constituents of atomic nuclei, along with protons. A neutron is observed

to decay to a proton and an electron, and we denote this decay as
n—pt4e, (7.41)

where we denote the neutron as n, the proton as p*, and the electron is e~. The superscripts
denote the electric charge of the proton and electron; the neutron is electrically neutral.
You'll be introduced to these concepts in the course next semester. In addition to the
neutron producing a proton and an electron, kinetic energy is also produced that pushes the
proton and electron apart. Let’s call this kinetic energy AK. So, our model for neutron

decay is the following. We initially have a neutron hanging out in space at rest, v = 0:

O,

As a model for decay and kinetic energy release, we imagine that there is a little time bomb

in the neutron:

After the half-life of the neutron elapses, about ten minutes, there is a 50% chance that the

neutron decays and a 50% chance that it does not:
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o

ORGMY

If the neutron decayed, then this model /hypothesis for neutron decays makes concrete pre-

dictions for the kinetic energy of the electron that we can test in experiment.

If the neutron is at rest when it decays, then it has no momentum. The decay/explosion
of the neutron into a proton and electron exclusively involves forces internal to the pro-
ton/electron system, so momentum is conserved. This means that the sum of proton and

electron momentum is 0:
myT, + meUe = 0. (7.42)

As mentioned earlier, we will study this decay in two dimensions, so we can write this out

in components as
MpUp.z + MeVey =0, MpUpy + Meley = 0. (7.43)

Further, the neutron decay produces a kinetic energy of AK, carried by the proton and

electron. This means that

1 1 1 1
AK = §mpv§ + §mevz = 5y (v2,+v2,)+ M (v, +02,) (7.44)
where we have written the kinetic energy out in components on the right. Now, we would
like to massage these equations to determine the energy of the electron individually.
The first thing that we note is that, although we have expressed momentum and energy
with both components of the proton’s and electron’s velocity vectors, we can set one of the

components to 0. Momentum conservation requires that the velocities of the proton and

electron are back-to-back
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So, we can just orient our axes such that there is no y-component of velocity: v, , = ve, = 0.
With this orientation, the xz-component of velocity is simply the total speed of the proton

and electron:
Upw = Up, Veg = Ve - (7.45)

Then, conservation of momentum and energy are

myv, + meve =0, AK = 5y + SMeve - (7.46)
Momentum conservation implies that
Me
= ——, 7.47
Up mpv ( )
and plugging this into energy conservation, we find
1 e\, 1 ‘ 1 ‘
AK = —m, m—ve + —mev? = Me 1 ) —mev? = Me 1 1y K.. (7.48)
2 my, 2 mp 2 mp
Solving for the kinetic energy of the electron, we find
1 2 mp
K,=-mu, = —— AK. (7.49)

2 e_mp—i—me

The mass of the proton is about 2000 times that of the electron, so we can approximate the

mass ratio factor as

m

1 me\ m 1
P — =(14+— ~Nl-— 11— —— 1. 7.50
my, + Me 1+Z—; < my my 2000 (7.50)

So, the kinetic energy of the electron would just be approximately the kinetic energy released

by the neutron decay:

K, ~ AK . (7.51)

AK is a fixed value of about 1.2 x 10712 J or 780 keV (that is, kilo-electron Volts), so
this model predicts that the kinetic energy of every electron produced from neutron decay

always carries this kinetic energy. So, we test this prediction by preparing a large number
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of neutrons, let them decay, and measure the kinetic energy of the produced electron from
decay. If we always see the electron carry K, ~ AK = 1.2 x 10713 J, then we gain evidence
for the model of n — p™ + e~ decay.

If one does this experiment, this is not what is found! Instead of the electron always
carrying kinetic energy AK, it is found that the electron carries kinetic energy K, € [0, AK],
bounded from above by AK. So our hypothesis was incorrect. What is the simplest thing
we can do to modify it? We could throw out momentum and energy conservation, but
that is very dramatic because we have so much evidence for their conservation otherwise.
By Occam’s razor, the simplest explanation is typically the correct one, so we don’t want
to consider non-conservation unless we are absolutely forced to. Well, in the decay of the
neutron, we observe the proton and the electron decay products. However, what if there was
another, third, decay product that we could no observe directly? How would that affect the
kinetic energy and momentum that the electron carried?

Let’s now hypothesize that the neutron decays to three particles, referred as a three-body
decay, n — p* + e~ + v, where the third particle is denoted with the Greek letter nu, v, and
is called a neutrino (story to follow). What do conservation of momentum and energy look
like now?

We illustrate the decay of the neutron now as

with conservation of momentum and energy:

MeUe + MyU, + m,v, =0, AK = %mevz + %mpvf, + %myv?, . (7.52)

(I should say that these are not the correct conservation laws for this decay because the

neutrino is traveling at essentially the speed of light. However, it is sufficient to illustrate
the interesting physics.)

Unlike the two-body decay we had studied earlier, this three-body decay is not confined

to a line, so we have to consider a more general, two-dimensional, conservation law. We can,

however, still rotate axes to be convenient; we will choose to align the electron velocity with
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the z-axis. Then the conservation laws in components are

MeVe + MpUpz + MUy, =0, MpUpy + MyVyy =0, (7.53)

1 1 1
_ 1t 2 .+ 2 2 : 2 2
AK = 2meve + 2mp (Up,w + Up,y) + Qm,, (Uv,x + Uv,y> )

Now, we have three conservation laws but five unknowns (ve, Uy, Upy, Vs, Uy), SO We
cannot uniquely solve the systems of equations. However, we can simplify it and eliminate
dependence on the neutrino velocity, v,. From the conservation laws for momentum, we

have

MeVe + MpUp 4 my
Upy = — : Upy = ——Vpy - (7.54)

m, m,

Plugging these expressions into the conservation of energy, we find

1 1 Ve 2 m?
AK = fraci2me? + Jm, (o], +),) + 5m, ((m - ;TPUW) + m—’;viy) (7.55)

1 9 Me My Upy 1 9 my,
:§meve <1+my +m—yv—e) +§mpvp 1+m_1, ,

which has no residual dependence on the unobservable neutrino velocity. We can solve for

K. = im.v? and find

(7.56)

where K, = %mpvﬁ.

Now, unlike the case when we hypothesized that the neutron decayed exclusively to
the proton and electron, the kinetic energy of the electron has a range of possible values,
just as we measure in experiment. For example, the speed of the electron can vanish:
v, = 0, and momentum and energy still be conserved through the proton and neutrino.
Thus, conservation laws can be exploited to determine and identify new particles you can

otherwise not directly observe!

This conservation of momentum and energy (and angular momentum) argument for
neutron decay, or radioactive decay more generally, was used in the early 1930s to postulate
the neutrino. In the 19-teens, 20s, and 30s, people like the Curies and Lise Meitner identified

radioactivity in heavy, unstable isotopes, and even constructed a theory for their mechanism.
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However, it was observed that the conservation laws had problems connecting theory to
experimental data. To rectify it, Wolfgang Pauli postulated the existence of a new particle
that was also produced in radioactive decay which he called the “neutron,” but we now call
the “neutrino” (“little neutral one” in Italian, coined by Enrico Fermi). Pauli had been
invited to a conference on radioativity in Tiibingen, Germany, in the early 1930s when he
had the idea. Unfortunately, his attendance was required at a ball in Ziirich, Switzerland,
at the same time, so couldn’t attend the conference. However, in lieu of attending, Pauli
wrote a letter to Lise Meitner who was at the conference in which he laid out his idea for

the “neutrino.” Pauli addressed the attendees of the conference in the letter asf]
Dear Radioactive Ladies and Gentlemen,

and further apologized for his absence!

7.4 Working with the Center-of-Mass

I hope I have impressed upon you the importance of momentum conservation and how it has
very relevant consequences for our world. In this lecture, we're going to start pivoting from
momentum conservation to the discussion of dynamics of rotations. Our first step will be,
as always, to revisit Newton’s second law written in a form we had introduced previously.

For a system of n masses, we had shown that Newton’s second law could be written as

4 = ATy
Fext - ( E mz) dt2 5 (757)
=1

where

Zmi:m1+m2+---+mn, (7.58)

=1

is the sum of masses in the system and Z.,, is the position of the center-of-mass

n — — — —
Do T Ty A+ mady + - A+ M Ty

D 7.59
Do my miy+mo+---+my, ( )

g J—
Lem =

2W. Pauli,“Dear radioactive ladies and gentlemen,” from a letter to Lise Meitner, dated Dec. 1930
[reprinted in Phys. Today 31, no. 9, 27 (1978)].
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This has, so far, mostly been a notational convenience rather than a powerful predictive
framework, but we had mentioned that two mutually-gravitationally bound masses orbit
their common center-of-mass. Why is that the case and what consequences does the center-

of-mass have for systems that in general are composed of many individual masses?

Let’s first just study a system that consists of two masses, m; and msy, separated by a

distance d:

To calculate their center-of-mass, we need to know the position vectors of the masses which,
in turn, requires setting up a coordinate system. As I have always said, life cannot imitate
art in physics, which means that this coordinate system is simply a tool to be able to talk
concretely about the masses, but their physical location, and hence the physical location of
their center-of-mass, is the same place, regardless of the coordinates used. So, we simply

pick convenient coordinates with, say, mass 1 located at the origin:

R
<

---l M My |-=--d

Then, the center-of-mass location in these coordinates is

fcm _ mlfl + meQ _ 0- my + mgdi _ mgd 5 (760)

mi + Mo mi + My mi + mo

Note that m; and mqy are positive, so mfjfmz < 1, which means that the location of the

center-of-mass lies between the masses:
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mi + ma mi1 + my
Of course, the sum of distances of each mass to their combined center-of-mass is d:

mgd mld

d_

= + . (7.61)
my + mo my + mo

7.4.1 Forces on Extended Objects

Now, let’s imagine that the two masses are connected by a rigid, massless rod, like so

mi ma
com

Now, with this set-up, let’s imagine exerting a force upward on mass 2, like so

my ma
com

ol

What does this mass-rod system do, immediately after the force is applied?
To answer this question, let’s consider the Newton’s law we derived for a system of masses.

First, the free-body diagram for this system is

—

F = F=(m+m)ium (7.62)

where we imagine the force acting exclusively at the center-of-mass. So, the acceleration of

the center-of-mass is

F
Oen = ——— upward. 7.63
s P (7.63)
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Further, it doesn’t matter where on this system we consider the force exerted, on mass 1,
somewhere on the rod, etc., the center-of-mass always accelerates with this rate. What
response the individual masses have depends on where the force is applied, but the center-
of-mass just accelerates according to the net external force.

This can be exploited to great effect. First, let’s consider putting this mass-rod system
near the surface of the Earth. Now, there is a net external force, namely, gravity. By our

work thus far, this force acts at the center-of-mass,

—

F,=—(my+m2)g)= (m1+ ma)dem , or that em = —G 7. (7.64)

So, if we just let this thing fall, the center-of-mass would accelerate at g. Conversely, to hold
the object up, we need to apply some normal force that prevents the center-of-mass from
accelerating downward. As long as we do this, the object will not fall. So, we only need to

hold it up by the center-of-mass.

Example

To illustrate this phenomena, let’s consider a croquet mallet, and on it, someone has nicely
put LEDs at the location of its center-of-mass. I will turn off the lights and then throw
the mallet across the room, ensuring that the head tumbles over the handle. What will the

trajectory of the lights be?

(é@@b% ) Lights do not work when moving

(b)

By Grabthar’s hammer, let’s try this out! (See https://youtu.be/I4EkPHyW3ig)

7.4.2 Center-of-Mass of an Extended Object

Now, this two-mass system is just the starting point; we would like to determine the center-

of-mass for an arbitrary system of masses. We will consider some blob as the system of


https://youtu.be/I4EkPHyW3ig
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interest:

Let’s assume that the blob is just two dimensional for simplicity. How do we calculate its
center-of-mass?
As often in this game, let’s break it up into many small masses and sum them up. So,

we will consider

where the small submasses are labeled. The total mass M of the object is

Further, let’s introduce A; as the area of the ith piece. Then we call the density o; the ratio

of mass to area:

m;
= 7.66
o i ( )

Now, this is two dimensional, so we can specify the point ¢ by its z- and y-coordinates:

(7.67)

0; = O'(ZE,y) -
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If the areas are taken to be very small rectangles with sides of length dx and dy, the area is
Az,y) = dxdy, (7.68)

and for small area, mass is also small, so we denote m(x,y) = dm. Schematically, we then

have that the density is

dm

- drdy

o(z,y) (7.69)

The total mass is simply the sum of all of these small masses. In the limit that the masses

get infinitesimally small, the sum transforms into an integral

M:Zmi = /dm://di”;ydxdy://a(x,y)dxdy. (7.70)

On the right, we have introduced a double integral over the density to calculate mass. A

double integral is just two nested integrals: do the x integral first, assuming ¥ is constant,

then integrate over y. So, our expression for the mass of a complicated shape is

M= // o(z,y) dz dy. (7.71)

Now, to calculate the center-of-mass of this object, we weight each tiny mass by its

position vector and divide by the total mas

:fcm:%/dez%//a(x,y)?dmdy: ffa(:v,ly)dxdy //a(a:,y) (i +y)) dedy.
(7.72)

To integrate over the vector of position 7, the unit vectors 2 and j are constants, unaffected
by integration. They need to be kept around to determine the vector position of the center-

of-mass.

Example

With these observations, we are going to think about its consequences for in an example.
Consider an arbitrary shaped mass. I hang the mass from a nail and it swing freely until it

comes to rest. With respect to the nail, where is the center-of-mass?
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(a) Right of the nail (c) Below the nail

(b) Left of the nail (d) Above the nail

(See https://youtu.be/0fFvrttovcU) Can you think of a method for determining the

exact position of the center-of-mass of an object using this result?


https://youtu.be/0fFvrttovcU

Chapter 8
Rotation

Previously, we demonstrated and discussed properties of the center-of-mass of an object that
has extended or irregular structure. Regardless of what force is exerted on an object or how,
the center-of-mass of that object accelerates simply according to Newton’s second law,

~ d*Zomn
Fext = M dt2 I

(8.1)

where M is the total mass of the object. Also, as we observed previously, this clearly isn’t the
whole story. When I threw the mallet, you indeed saw that the center-of-mass traveled in a
parabolic trajectory, as expected from projectile motion. However, as the center-of-mass was
traveling as a projectile, the head and handle of the mallet rotated end-over-end about the
center-of-mass, clearly a non-projectile motion. How do we model this motion and describe

the more general motion of the entire mallet, not just its center-of-mass?

8.1 Rotation about the Center-of-Mass

Let’s start this discussion with the physical set-up that we considered at the end of the
previous chapter. Let’s consider two masses separated by a distance d by a rigid rod and

apply vertical force F to mass mo:
127
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me

gl

From our earlier analysis, we know that applying this force accelerates the center-of-mass

F

F= Gem that — Gem = ——J. 8.2
(my + mg)d or tha a — m2‘7 (8.2)

So, the center-of-mass just accelerates vertically according to the magnitude of F and the

sum of the masses. What about the accelerations of masses 1 and 2 individually?

8.1.1 Forces on Extended Objects

Let’s break apart Newton’s law as an explicit sum over the accelerations of masses 1 and 2:

. . mydy + mod; _ .
F = (my +mgy)dem = (M + mg)M = mqyd; + meds . (8.3)
mi + Mo

The sum of accelerations d; and @, is constrained by the acceleration of the center-of-mass,

so let’s express the individual accelerations as
) = Qe + Ady dy = Ae + Ads (8.4)

for some accelerations Ady, Ads. So far, this is just a tautology; we have done nothing but
shift our notation. However, now we can find a simple relationship between Ad; and Ads

from Newton’s second law:
F = (my +ma)@em = mi(Gem + AG1) + mo(@em + Ads) (8.5)
or that miAd; + moAds = 0. We'll use this relationship to relate Ad; to Ads, where

A = —"2Ag,. (8.6)
my
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So, the individual accelerations are
CYl - d’cm - _AC_I:Q y 52 = d’cm -+ Aag . (87)

There are more constraints we can exploit.

The fact that the masses are connected by a perfectly rigid rod constrains their motion
about the center-of-mass and relative to one another. The center-of-mass from this applied
force moves exclusively vertically. Because of the rigidity of the rod, mass 2, for example,
remains a fixed distance away from the center-of-mass. However it can, in principle, have
any orientation about the center-of-mass. So, what type of motion is constrained to be a

fixed distance from a point, but have any orientation? Circular motion!

Therefore, masses 1 and 2 travel in a circular orbit about the center-of-mass as the
center-of-mass accelerates vertically. So, somehow this circular motion is accounted for in
the Ad, acceleration we have yet to find. Again, let’s use rigidity to find more constraints
on this circular motion. Because the rod is perfectly rigid, the masses m; and my are always
on opposite sides of their respective circular orbits; that is, they necessarily orbit with the
same angular velocity. If they had different angular velocities, then they would no longer be

antipodal, and the rod must crumple, but that can’t happen.

Angular velocity w is defined as the first time derivative of the angle 6 through which an

object travels:

do
= —. 8.8
We can take a second derivative to identify the angular acceleration, a:
d*0  dw

Now, if the angular velocities of masses 1 and 2 are identical, w; = wy, then so too must their
angular accelerations be: a; = a. The force F works to angularly accelerate the masses in

the same direction of rotation:
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—

[ Acm
mi > ma

Lem

STl

So, we can imagine that Fis responsible for the rotation of m; and ms in the counterclockwise
direction, in the same way that it would accelerate them linearly if it pushes m; and ms

when touching, i.e.,

— —— common acceleration
F

To rotate m; and msy about the center-of-mass, then F has to push against the inertia of
both masses, to get them both to rotate. Just like in the linear case where the two masses
would have a common linear acceleration and the force would push against the combine mass
of the two blocks,

F = (my +my)a, (linear) (8.10)

the fact that in this rotating case the two masses have the same angular acceleration suggests
a nice way to interpret.
The force F provides a tangential acceleration of the two masses in their orbit about the

center-of-mass. That is, Newton’s second law implies

—

F = mylian 2, or F = mayaan 2, (8.11)

where we can drop the vectors because rotation is occurring in one plane (the plane of the
page). Note that only the acceleration of mass 2 appears because F only directly acts on
mass 2. Tangential acceleration is related to angular acceleration by a factor of radius from
the center of the orbit. What is this relevant radius R, to relate

Qtan2 = Ra? (8.12)
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Right at the instant when F' is applied, only mass 2 moves; mass 1 remains stationary
(for an instant). So, at that moment, mass 2 is orbiting mass 1, a distance d away. Therefore,

we initially have
Qtan2 = da, (8.13)

so that Newton’s law is simply F' = moda. Now, one can use this to go back and solve for
the unknown Ady, but we won’t do that here (though I encourage you to do so!). I want
to massage this expression into another form that exclusively uses information about the

rotation of the masses about their common center-of-mass.

Note the string of identities:

myd mymed m%d2 m%d2 9 9
F = do = —_— —_ = R R
ma + mo mq + mo @ (ml (m1 -+ m2)2 + e (m1 -+ m2)2 @ (ml ! + e 2) @
— FR,. (8.14)

Here, Ry and R, are the distances from the center-of-mass to the respective masses. The
factor of Ry that multiplies F' is the distance from the location of the applied force F to the

center-of-mass.

I emphasize that this is nothing more than Newton’s second law, but expressed in a way
useful for rotations. The mass-times-radius factors are called moments of inertia / defined

as
I=MR?, (8.15)

where M is the mass of the object and R is the distance to the rotation axis. Apparently,

we have
FR2 = ([1 +12)Oé, (816)

which looks a lot like F' = (my 4+ mg)a for common linear motion!

8.1.2 Rotational Kinetic Energy

Let’s introduce another angular concept before we dive into their consequences in the fol-

lowing lectures. Let’s again consider the two masses connected by a rigid rod:
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R1 RQ

In this system, we will have the center-of-mass travel with constant velocity v., = v}, and
the masses orbit the center-of-mass at angular frequency w. Let’s calculate the kinetic energy

of this system. The kinetic energy is simply

1 1
K= imlvf —+ 57712?)% s (817)

but we need to find ¢, and ¥, given the data of the problem.
Let’s first consider mass 1. We can break its velocity into the linear component and

rotational component. The linear component is simply the center-of-mass velocity:
U )in = V) - (8.18)

For the rotational component, we had studied this long ago and can express the tangential

velocity as
Ul rot = —wRy sinwt i+ wRy coswt 7, (8.19)

for example. Then, the total velocity of mass 1 is the sum of these expressions, where

—

U = (—wR;sinwt) i+ (v+ wR; coswt) j. (8.20)
Its square is thus

v? = |t |> = ) - U1 = w R sin® wt + v* + w?R? cos® wt + 20w R, cos wt (8.21)

=v? + W R? 4 2uwR; coswt .

Then, the kinetic energy of mass 1 is

1 1
K| = Emle + §m1R%w2 + myvw Ry coswt . (8.22)

Let’s now do the same thing for mass 2. Mass 2’s linear velocity is still the center-of-mass
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velocity,
UaJin = V)] - (8.23)

For the rotational component of mass 2’s velocity, note that its direction must be opposite

to that of mass 1:

and the magnitude of 75 is determined by the angular velocity w and its distance from the

center-of-mass,
Vg pot = WRysinwt? — wRycoswt j. (8.24)

Then, the total velocity of mass 2 is

—

Uy = (WResinwt) 2 + (v — wRy coswt) J, (8.25)
and its square is

vs = w?R3sin® wt + v? + w? R} cos® wt — 2uw Ry cos wt (8.26)

=02 + W R? — 2uwRy coswt .

The kinetic energy of mass 2 is then

1 1
Ky = §m2v2 + §m2R§w2 — Mavw Ry coswt . (8.27)

The total kinetic energy of the system is the sum of the kinetic energies of the two masses,

where

1 1 1
K=K +K;= E(ml + mg)v? + =my Riw* + §m2R§w2 + (m1 Ry — maRy)vw cos wt .

2
(8.28)
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Note that m; R; = my Ry because

my e md (8.29)
my + Mgy mi + msy

so the weird final term, with the naked cosine factor, vanishes! We can therefore write the

kinetic energy of this system as

1 1
K = (m+ ma)v? + SO+ L)w?, (8.30)

where I} = m;R? and I, = myR3, the moments of inertia of the two masses.

8.2 Calculating the Moment of Inertia

Previously, we studied the dumbbell system of two masses m; and mgy connected together

by a massless, rigid rod:

:Ecm

The center-of-mass of the system is identified and the distances of each mass to the center-

of-mass is

d d
R, = m—Q’ Ry = m—1’ (8.31)
mi + Mo mi + mg

where the separation distance of the masses is d. We had considered exerting a force upward

on mass 2, which had one consequence of accelerating the center-of-mass:

F = (my 4 my)Zem , (8.32)
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me

gl

but also had the consequence of rotating the two masses about the center-of-mass. By
considering the net force on mass 2 exclusively, we demonstrated that its Newton’s second

law could be written as
FRy = (m1R} + myR3)a, (8.33)

where « is the angular acceleration of the two masses about the center-of-mass and the
quantity mR? = I is called the moment of inertia.

The moment of inertia is the inertia of a mass m that impedes rotational change (i.e.,
angular acceleration) about an axis a distance R from the mass. For a point mass, the
moment of inertia is just mR?, and for an extended object, the moment of inertia can be
found by simply summing over many small masses. In this lecture, we will explicitly calculate
the moment of inertia of a sphere, about an axis that passes through its center. As we need
to sum over a lot of masses and a sphere is a three dimensional object, we will need to do

many integrals. Have no fear; we will break it down into many small steps.

8.2.1 Moment of Inertia of a Sphere

Let’s first draw the sphere and rotation axis:
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Let’s give the sphere a radius R and total mass M, and the sphere is being rotated about
the vertical axis through its center. For a small part of the sphere of mass dm, its moment

of inertia dI is
dl = r*dm . (8.34)

So our goal is to find r and dm and do the necessary integrals.

First, as we had done with the center-of-mass, let’s break apart the small mass dm into

a product of a mass density p and a small volume dV:

dm = pdV , (8.35)
where
M
P = Vol ’ (8.36)

where Vol is the total volume of the sphere. For a sphere of radius R, its volume is

4
Vol = gwR3, (8.37)
so the density is
3 M
p= 1 (8.38)

In what follows, we will just leave the density implicit as p, only plugging in the explicit

expression at the end.

Now, our small moment of inertia is dI = r? pdV, so we need to figure out the small
volume dV, for some component of the sphere. To do this, we need a coordinate system,
just like we need coordinates to express a position vector. As always in this business, life
cannot imitate art, so the value of the volume is independent of your coordinates, but you

need to represent it somehow to make progress.

One possible coordinate system is Cartesian coordinates in which we represent points by
their x (left-right), y (forward-back), and z (up-down) position. This is likely the coordinate
system you are most familiar with, as we have often employed it in these lectures. We can

draw these coordinates and a small volume in this space as
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Az /dV

dz

dx

Na@ 4

A small volume in Cartesian coordinates is a parallelepiped of sides dz, dy, dz, so the volume

is
dV =dxdydz. (8.39)

So, to calculate the volume of the sphere for example, we just sum up a bunch of little
parallelepipeds, with the constraint that they form a sphere. The surface of a sphere is

defined by the equation
Pyt =R (8.40)

where R is the radius, and so points closer to the origin than the surface (the “bulk” of the

sphere) are defined by the inequality

2yt 422 < R (8.41)

8.2.2 Spherical Coordinates

Again, I emphasize that life in physics cannot imitate art, so we could continue along this path
and evaluate the moment of inertia using Cartesian coordinates. However, in practice, en-
forcing the relationship above is very inconvenient because a sphere is not well-approximated
by a parallelepiped. So, instead of Cartesian coordinates, let’s use coordinates to express the
small volume in the sphere in a way most natural for the sphere. These coordinates, or at
least two of them, are familiar to you from the expression of a location on the surface of the

Earth. Rather than z,y, z coodinates augmented with the constraint of being on the surface
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of Earth, we use latitude and longitude to express a location. That is, we put a grid on the

surface of Earth in terms of relative angle from the Equator and the Prime Meridian:

/- Prime Meridian

lines of latitude

Equator

Given the value of the latitude ¢ and longitude ¢, we can identify a unique point on the

surface of Earth. Latitude is also called the polar angle, because it ranges between the

poles, while longitude is an azimuthal angle as it varies about the axis defined by the

poles.

Further, for our sphere of interest that we want to calculate its moment of inertia, we

need a radial coordinate r that varies from 0 (center of Earth) to R (surface of Earth). With

r, 0, ¢ specified, we identify a unique point in the sphere. Also, note that restricting to the

surface of Earth is very simple: we just require that » = R, with no squares or square-roots

like in Cartesian coordinates.

With these coordinates identified, let’s now figure out what the expression for the small

volume dV is. Let’s draw a picture:

4
@:d@
N

4 do “dr

N

r

a4

<Y
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The volume of this little chunk is then simply the product of the length of its three sides.
Note that this is not simply dr df d¢, because, among other issues, volume has units of
length-cubed, while this expression only has dimensions of length (angles are dimensionless).

So we need to work a bit harder.

The length in the radial dimension of this chunk is indeed just dr, and to find the lengths
in the # and ¢ dimensions, we will consider projections of the sphere in different planes.
Let’s take a slice of the sphere along a line of longitude to determine the length in the 6

dimension, ly:

pole

pole

The arc length of an angular region of size df at radius r is simply
lg =7rdo, (8.42)

which is what we need.

Now, let’s take a slice along a line of latitude, an angle 6 from the North Pole. The

picture of this for determining the length in the ¢ dimension, [, is

Note that now the radius of this slice is r sin § which you can see from the geometry of where
the chunk is located:
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17 /— relevant radius
0
. r
y
x
It then follows that this arc length is
ly =rsinfde. (8.43)

Putting it all together, we find the volume of a small chunk in spherical coordinates to
be

dV =drdlgdly = r*sin0drdfdg, (8.44)
located a distance r from the origin and an angle 6 from the North Pole. Whew!

8.2.3 Three-Dimensional Integration

Okay, now we just need to multiply this volume by the density p, then by the distance from
the axis of rotation (the z axis) and integrate, and we have the moment of inertia. We had

just identified the distance from the z axis in calculating the volume element of the chunk:
r,=rsing, (8.45)

so the moment of inertia of the chunk is
dl = pr2dV = pr* sin® 0 drdf do . (8.46)

The total moment of inertia of the sphere is

R T 2
I:/dlzp/ r4dr-/ s1n39d9-/ do . (8.47)
0 0 0
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Note the simple product of one-dimensional integrals here. That will make life very
simple (and something that would not have happened with Cartesian coordinates). Note
also the bounds of integration: r ranges from 0 to R, the radius of the sphere; # ranges from
0 radians (North Pole) to 7 radians (South Pole); and ¢ ranges from 0 to 27 radians (all the

way around a circle). So, two of these integrals are

R R5 2
/ rtdr = — / dp = 2. (8.48)
0 i) 0

The integral over 6 can be evaluated using a u-substitution which I encourage you to derive

on your own. The answer is

T 4
/ sin® 0 df = - . (8.49)
0 3
With the density of
3 M
P = AnR3’ (8.50)

we find the moment of inertia of the sphere to be

Iohere = ——= + — « — or = ~MR?. 8.51
phere = 7R3 "5 '3 T T § (8.51)

Whew!

8.3 Ball Through a Loop-the-Loop Redux

In the previous lectures, we motivated the moment of inertia as a measure of rotational
inertia, analogous to mass as linear inertia that opposes changes to its motion. From one
perspective, moment of inertia is just a short-hand for a complete analysis of the masses and
velocities of objects undergoing rotational motion. One could just use standard Newton’s
laws to describe rotational motion, and everything would work out. However, we will see
starting now that re-expressing Newton’s laws, kinetic energies, forces, etc., in a rotational

language will be extremely powerful and convenient.
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8.3.1 Review

In this lecture, we will revisit a problem we had analyzed with energy conservation a while
ago, now accounting for rotational motion as well. We are going back to the old loop-the-
loop problem: given a ramp that leads to a loop-the-loop of radius R, what is the minimum

height A that a ball should be released from to make it all the way around the ramp?

2R

Let’s remind ourselves of what we had done previously. First, assuming that the ball slides
down the ramp without friction, we used conservation of energy to relate the initial gravita-

tional potential energy to the energy at the top of the loop. We have:
L
mgh = 5mv +mg(2R), (8.52)

where the mass of the ball is m and the speed of the ball at the top of the loop is v. Now,
for the ball to stay in the loop, it must be traveling in a circle, which enforces a minimum
centripetal acceleration. At the top of the loop, centripetal acceleration is minimized if the
ball just comes off the loop there, so the only force acting on it is gravity. So, demanding
that the centripetal acceleration at the top of the loop is at least g, we find that the speed
v is
v 2
9="5" or that  v° = Ryg. (8.53)

Inserting this into the conservation of energy from earlier, we then find
1 5
mgh = §m(Rg) +mg(2R), or that h = §R. (8.54)

We can test this, as we have done, and we find that the ball doesn’t make it all the way

around if we release it from a height of h = gR. We have to release the ball higher!
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8.3.2 Including Rotational Kinetic Energy

So what is going on? Now, with our introduction to rotational dynamics, we know that there
is more energy in the ball than just that from translation of it center-of-mass. As the ball

goes down the ramp, it is both translating and rotating about its center:

-

ey

Indeed, the ball is rolling without slipping, which interestingly implies that static friction is
very important. The ball we roll down the ramp is a solid metal sphere (a ball bearing) so
its total kinetic energy when rolling can be expressed as motion of its center-of-mass and

rotation about its center-of-mass:

1 1 1 12
K = §m1)2 + §Iw2 = §m1]2 + igmr%ﬂ. (8.55)

In the second equation, we inserted the expression for the moment of inertia of a sphere
with mass m and radius r. Further, if the ball is rolling without slipping, we have a simple

relationship between the speed and angular speed:
v =wr. (8.56)

Then, the kinetic energy of the rolling ball is

1 12 1 1 7
K = imv2 + §gmr2w2 = (— + —> mv* = —muv?. (8.57)

The coefficient 7/10 is kind of weird, but if it works to describe our data/demonstration,

then it isn’t that weird.

So, with this result, our conservation of energy expression becomes

7
mgh = Eva +mg(2R). (8.58)
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We still have the requirement that the minimum centripetal acceleration is g so that

v?* = Rg. (8.59)
This then implies that
7
mgh = 1—0ng +mg(2R), (8.60)

or that the minimum height h that the ball must be released from to go around the loop-
the-loop is

27 5
_ 4 p<2R 61
h=1sR> SR (8.61)

Let’s test this out! (See https://youtu.be/P_bMYJsrewo)

8.3.3 Other Effects

Apparently, we need to go a little higher than even 27/10R to get the ball to go completely
around the loop. Of course, we can wave our hands and say words like “sounds energy
losses,” “friction,” and the like, but there are a couple of physics points that we have ignored

that I want to ask about now.

Example

First, the ball isn’t sitting on top of the ramp; it rides between two rails like so

I
N

rails

Note that the distance from the rails to the axis of rotation of the ball, r., is less than the
radius of the ball, . How does this affect the minimum height from which the ball needs to

be released?

(a) Increases h beyond 2IR (¢) No effect on the minimum height

(b) Decreases h


https://youtu.be/P_bMYJsrewo
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Okay, let’s figure this out. Again, the kinetic energy of the rolling ball is

1 1 1 1
K= §mvz + §Iw2 = §mU2 + gmr%? : (8.62)

Note, however, that the speed is not v = rw, but set by the smaller radius r.:

V=T (8.63)
Then, the kinetic energy of the ball is
1 1 2 172
K = §mv2 + gmr%rwa = (5%) mv? . (8.64)

Our conservation of energy equation is therefore

mgh = <—:—2> mv® +mg(2R) = (—T—2> mgR +mg(2R), (8.65)

where we have inserted v? = gR by the centripetal acceleration. Then, the minimum height
h is

5 172 27
h=(Z+-—")R>"R )
(2 57‘2) - 107 (8.66)

because r > r.. So, we have to release the ball even higher.

Example

There is another effect we have ignored. Because of the finite size of the ball, its center-of-
mass actually doesn’t get to a height of 2R at the top of the loop. If the ball rode on top of
the ramp, it would only be at a height of 2R — r:

O

Accounting for the separated rails that the ball rides between, this height is increased to
2R — r.:
r
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How does this displacement of the ball’s center-of-mass affect the minimum height further?

(a) Increases h (¢) No effect on the minimum height

(b) Decreases h

Because the center-of-mass only gets to a height of 2R — r,, this affects the conservation

of energy expression:

172
mgh = <§ﬁ) mv® +mg(2R —r.). (8.67)

C

Additionally, the radius of the circle through which the center-of-mass travels in the loop-

the-loop is R — r,, and not just R:

Then, the restriction on centripetal acceleration is

2
RU_ m or that v =(R—r.)g. (8.68)

g:

Then, conservation of energy becomes

172
mgh = (ﬁﬁ) mg(R —r.) +mg(2R —r.), (8.69)

which slightly decreases the minimum value of h by a distance Ah:

3 1r?

C

which is quite small compared to the increase in h from accounting for the rails.
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8.4 The Right-Hand Rule

In the previous few lectures, we have introduced a formalism for describing the dynamics of
a rotating rigid body. I want to emphasize that Newton’s second law as we introduced it
near the beginning of this course, as well as our expressions for kinetic energies, momenta,
etc., can all be used to describe a rigid body that is rotating, but it is very convenient to
rephrase expressions exclusively in terms of properties of rotation. For example, if you have

an object that is rotating about the axis like so:

dm

w

you can calculate its kinetic energy by summing up the kinetic energy of every little mass

that composes it. This would be

1 1 1 1
K:i/UQdmZQ/w2r2dm:§(/TQdm)w2:§fw2. (8.71)

In the second equality, we note that a rigid body must rotate with the same angular velocity
everywhere and r is the distance from little mass dm to the axis of rotation. Because w is
constant over the object, it can pull out of the integral and we identify that the integral that
remains is just the moment of inertia of the object. So, it becomes much more convenient
to express the kinetic energy of a rotating object as %[ w?, because we only have to calculate
the moment of inertia once and for all.

Nevertheless, there was still something slightly odd about how we denoted the angular
velocity of the object. We say “angular velocity,” but I have never expressed it as a vector;
that is, I have only written w, not . This might seem a bit odd because “velocity” is
definitely a vector. Further, how we have expressed the direction of rotation is a bit strange
from the perspective of linear motion, for example. For an object traveling along a non-

straight path, we wouldn’t draw its relative velocity as

§ \ /7



Chapter 8. Rotation 148

yet we seem comfortable drawing the direction of rotation of an object in a non-straight

manner:

Yet another issue is that an object rotating at a constant rate should continue to rotate
at a constant rate if there are no external forces acting on it. We've seen hints of this
before, but the argument is simple: to rotate requires a force that keeps every point in the
object in centripetal acceleration. This centripetal acceleration can be completely accounted
for by internal forces in the system object; c.f., two mutually-orbiting bodies interacting
gravitationally. As such, there should be no ambiguity for what the angular velocity is. We

shouldn’t need a wonky curvy arrow to denote it. So let’s figure out a better notation.

8.4.1 Right-Hand Rule #1: Angular Velocity

For concreteness, let’s consider rotating a bicycle tire about the axis through its center:

/ axis of rotation

Given this axis of rotation, how many options are there for the direction of rotation? This
is amazingly simple and profound: given an axis of rotation, there are only two options for
the direction of rotation. The wheel can rotate with the front of the tire moving down or up

from your perspective:
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However, “moving up” or “moving down” is not a unique way to define rotation. If the

wheel looks to be moving up to you, what does it look like to someone on the other side of
the wheel? They see it moving down! So, we need another way to denote the direction of

rotation.

Let’s look at the wheel head-on:

axis \

Note that there are the same numbers of directions of rotation (2) as sides of the wheel (2).
Another way to say this is that given the axis of rotation, we can move along it to the left
or to the right. So, a natural way to express the angular velocity is as a vector that points
either to the left or the right along the axis. Then, the axis is clear and the direction of
rotation is unambiguous, given a convention for mapping direction of rotation to a direction
along the axis. This mapping is called the right-hand rule. What one does is curl the
finger on your right hand in the direction of rotation and then your thumb points in the

direction of the angular velocity vector, <. For the wheel, we have
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This is but one of the many right-hand rules in physics.

8.4.2 Right-Hand Rule #2: Torque

The second right-hand rule we will introduce now. How do we get the wheel rotating in the
first place? Just like with getting an object to move from rest, we have to apply a force.
Unlike for linear motion, however, just applying any old force won’t do. For example, if I
pushed the wheel perpendicular to it (radially), in the direction of the center of the wheel,
would the wheel rotate? I only care if it rotates, not if it moves otherwise. That is, I apply

a force

M,

No! To convince yourself of this, try closing a door by pushing on the edge of the door,

toward the hinge.
To get the wheel rotating, we have to apply a force with some non-zero component

tangent to the surface of the wheel:

The component of the force in the direction of the axis of rotation is doing nothing to help
actually rotate the wheel. So, the component of the force that works to rotate the wheel is

perpendicular to the position vector at which the force is applied:
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relevant force for rotation

Further, more change in rotation is accomplished by pushing farther from the axis of
rotation. If we push a door right at the hinge, it is very hard to close the door, which is
why door handles are located at the outside edge of the door. Similarly, for the same force,
there is much less change in rotation of the wheel if the force is applied near the axis of
rotation. By the way, does that imply that higher or lower gears on a bike correspond to a

force applied farther from the axis/axle?

So, if we only want the component perpendicular to the position with respect to the axis
and we want to be further away from the axis to rotate more easily, this suggests that the

“rotational force” or torque 7 has magnitude
7= Frsind, (8.72)

where 6 is the angle between F and 7. This torque is the agent that enacts rotational
change, so, by Newton’s second law, is equal to the product of rotational inertia and angular

acceleration:
7= Ia, (8.73)

where [ is the moment of inertia (rotational inertia) and « is the angular acceleration. This
is referred to as Newton’s second law for rotations. For forces acting on two masses connected
by a rigid rod, we had derived this expression simply through manipulations of Newton’s

second law for linear motion.

Example

This is great, but it’s not a vector equation yet. We need to figure out the direction of

angular acceleration that a given torque induces. Let’s consider a force on the tire as such
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&l

What direction will the wheel rotate? So therefore what is the direction of angular velocity?

(a) no rotation (c) @ ® (out of the page)

(b) & ® (into the page)

Let’s place the force and position vectors with their tails together:

E

!l

This force will enact a rotation clockwise from our perspective, so angular velocity or accel-
eration are both into the page. We used the right-hand rule to find that direction of angular
velocity; can we construct a right-hand rule with 7 and F that produces the same direction?

Indeed, and the right-hand rule for the direction of torque is:
1. Place your left hand behind your back.
2. Point the fingers of your right hand in the direction of position vector 7.
3. Curl the fingers of your right hand in the direction of force vector F.
4. The thumb of your right hand points in the direction of torque 7.

Does this work for our example here? Remember, it is called the right-hand rule for a reason:
you have to use your right hand! (See step 1 above.) This isn’t some conspiracy against
southpaws, we just need some convention for defining the direction of angular vectors.

To end this discussion, I want to express Newton’s second law for rotations in vector form.
It should encode the direction information we have discussed and this can be accomplished

by a vector cross product,

mll
I
=
X
Bl
I
~
Q1

(8.74)
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The magnitude of the cross product of two vectors is
|7 x F| =rFsin, (8.75)

where 6 is their relative angle.

8.5 Static Equilibrium

Previously, we had introduced the angular velocity and torque as honest vectors, identifying
the direction associated with them. This was non-trivial and unfamiliar from our analysis
of vectors like velocity and force, because angular velocity and torque describe properties of
rotation in a plane. Our solution to identifying a unique direction for these vectors was to
note that they should encode information about the axis of rotation, and the direction of
rotation about the axis of rotation. Given an axis of rotation, an object can rotate one of two
directions, and so we identify the angular velocity vector as pointing in one of two directions
down the axis of rotation. In practice we find the direction of & using the right-hand rule:
point the fingers on your right hand in the direction of rotation, curl them in the direction

of rotation about the axis, and your thumb points in the direction of &:

rotation

We identified torque as the application of a force on an extended object that acts to change
the rotational motion of that object. As such, there is a corresponding Newton’s law for

rotation
T=1Ida, (8.76)

where 7 is the torque, [ is the object’s moment of inertia, and & is the angular acceleration.

Torque is not just a force; it depends on how and where on an object it is applied, with

respect to the axis of rotation. For example, a bicycle tire where we apply a force as so:
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Only the component perpendicular to the radial vector 7 of the force F acts to rotate the

tire. This component can be extracted with the vector cross product,
F=FxF, (8.77)

which has magnitude 7 = rF'sin 6, where 6 is the angle between 7" and F. The direction of
torque is also found from a right-hand rule. This time, the rule is to point the fingers on
your right hand in the direction of 7, curl in the direction of F , and your thumb points in

the direction of torque or angular acceleration.

8.5.1 Sagsaywaman

Now, with that long set-up and review, let’s discuss some consequences. To motivate this
lecture’s topic, I want to take a brief digression and discuss the Sagsaywaman site near
Cuzco, Peru. Sagsaywaman is a millenium-old city located in the mountains above Cuzco,
of which all that remains are enormous stones terraced on the hillside and placed with
exquisite precision on one another. An overview photograph of Sagsaywaman that I took
is shown in Fig. 8.1 while a photograph of the detail of the stone placement is shown in
Fig.[8.2]

So how does one go about building a structure like Sagsaywaman? We don’t know
actually how it was done almost a thousand years ago, but we can answer the question of
how we would build it now, knowing the laws of physics formalized as we have discussed. If
we want to construct a wall to stand for a thousand years, then an obvious requirement is
that we want the wall, and every element of the wall, to be at rest. Again, “at rest” means
that the center-of-mass of an object is not moving. If the center-of-mass is not moving, then

necessarily the net force on that object is 0O:
Fot =0. (8.78)

For a wall, we need the net force of every element of the wall to be 0.
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Figure 8.1: Photograph of the Sagqsaywaman site above Cusco, Peru.

It’s not enough to just have the net force on an object vanish for the wall to stand. A
wall is a very boring object: it looks identical at any time after it is constructed. We know
of systems for which their center-of-mass is at rest, and yet change in time. For example,
we had studied two massive objects mutually orbiting their common center-of-mass through
gravitation. There were no external forces, so the center-of-mass was at rest, yet the rotation
about the center-of-mass meant that the system had some non-trivial time dependence. If
you come back at some later time, you would see the masses in a different position than
originally. So, if a wall is not to move in any way, we must also require that it has no
motion/rotation about the center-of-mass. If this is the case, then the net torque on the

object is 0:
7_—»net =0. (879)

Again, for a wall, we need the net torque of every element of the wall to be 0.

So, compactly, we require that every element of the wall satisfies:

Foet =0, = no motion of the center-of-mass,
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Figure 8.2: Detail of the stone placement at Saqsaywaman.

Toet = 0, = no motion about the center-of-mass.

These two conditions are sufficient to enforce no motion of the object whatsoever. When
they are both true, an object is said to be in static equilibrium. To a large extent, the
job of a civil engineer, who designs roads, bridges, buildings, and other infrastructure, is to

design a structure that efficiently and acceptably remains in static equilibrium.

8.5.2 Detailed Study of a Simpler Example

As an example of a system in static equilibrium, let’s analyze a structure a bit simpler than
Sagsaywaman. We imagine the following: long, thin stones have been placed in a circle and
lean at an angle to come to a point with the next stone in the circle. That is, a segment of

the circle looks like

l
\9

with the length of the stones [ and the angle between the stones and the ground 6. The
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stones stay standing because they mutually exert forces on each other, similar to how a
group of people can sit on each other’s laps in a circle, with no one person holding up (or
being held up by) more than one other person. For simplicity, we will assume no friction
anywhere; can this ring stay standing?

Let’s just focus on one stone and draw the forces exerted on it

Fi

Here, I have denoted gravity acting at the center of the stone, the normal force N from the
ground, and additionally two normal forces, F, and ﬁb, exerted by the neighboring stones
at the top and bottom of this stone, respectively. The ring of such stones can stay up if all
forces acting on one stone are finite (or less than some structural maximum).

Let’s first analyze Fiet = 0. Note that two pairs of forces act exclusively vertically (]\7

and ﬁg) and two exclusively horizontally (F’t and ﬁb) Therefore, Foo = 0,
N+F+F+FE=0, (8.80)
reduces to a statement about magnitudes
N=F,=mg,F,=F=F. (8.81)

That was pretty easy; what about torques? We will analyze torques in two ways, about two
different axes, but demonstrate that we get the exact same results, as we must. First let’s
consider torques about the center-of-mass axis. About this axis, ﬁg exerts no torque, while
the torques of the other forces are
Fy
Fi : 9\

,F'

!
©

[ [
T = EFtsiné’ = §Fsin0
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Fy T © 7= —=Fysinfl = —Fsin#
2 2

= F . !

N T ® T:§Nc080:§mgcosﬁ

N/

Accounting for the direction of torques, demanding that the net torque be zero enforces

l [ l
Zf’ =0 = §F sin 6 + §F sinf = 2™mg cos ¥, (8.82)
or that
F= % cot 6. (8.83)

That is, as # — 0 (the stones get closer to the ground), the force they exert on each other
increases. There will be some angle at which the force is so strong that the stones will break,

so they should be placed nearly vertically to minimize this force.

Finally, let’s quickly analyze the not torque about another axis. Let’s consider the axis
at the bottom of the stone. Now, the normal force N and ﬁb have 0 torque as they are

applied at the axis. The torques of the gravitational force and ﬁt are

- F
Fy: IR 7T ® T = —mgcosf
[ 6 2
~
F,
}?’t: 9k T ® 7 =1Fsin6

so the net torque about the axis at the bottom of the stone enforces
— . l
ZT =0 = [Fsinf = 5™My cosf, (8.84)
or that

F="9 cot (8.85)
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which is the same requirement we found earlier.

8.6 Rolling Without Slipping

With this understanding of rotational dynamics developed, we are going to have some fun

interpreting the connection between rotational and translational motion.

8.6.1 Pulling a Spool Two Ways

To start, let’s analyse pulling a rope connected to a spool along the ground with a force F ,

without slipping. The picture of this is

STl

R
——
f

The radius of the spool is R, while the radius of the inner section where the rope is wrapped
around is » < R. I have denoted the pull force F and the force of friction f, responsible
for the rolling without slipping. Forces that act in the vertical direction (normal force and
gravity) will be irrelevant to this discussion, so we ignore them. With this set-up, let’s begin.

First, let’s find the net force on the spool, so find the acceleration of the center-of-mass

of the spool. We have

F+ f=ma, (8.86)
where m is the mass of the spool. In components, this is just

F—f=ma, (8.87)

along the horizontal axis. Now, let’s identify the torques on the spool. The torques from

both f and F act in the same direction

F
F‘

=l
X
E11
I
o
X
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by the right hand rule. Recall that the right hand rule is:
1. Place your left hand behind your back.

2. Point fingers on your right hand in the direction of 7 the vector that stretches from

the axis of rotation to the point of application of the force.
3. Curl fingers in direction of applied force.
4. Thumb points in the direction of torque.

—

Additionally, the angle between the vectors 7 and F (or f) are both # = 90°, so the magni-

tudes of the torques are
TP =1F, T =Rf. (8.88)
Then, Newton’s second law for the rotation of the spool is
e+ 1 =1F+ Rf =Ia, (8.89)

where [ is the moment of inertia of the spool and « is its angular acceleration.
Now, if the spool rolls without slipping on the ground, this relates linear and angular

accelerations a and «, where
a= Ra, (8.90)
so that the torque is

HW+Rf:I%. (8.91)

Now, we have two equations (net force and net torque) and two unknowns (a and f). Isolating

f in the net force equation, we have

f=F—ma, (8.92)
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and plugging it into the net torque equation, we have
I
rF + R(F —ma) = 7O (8.93)

or that the acceleration of the spool is

r+ R
a=——F, (8.94)
mR + =
to the right. Not surprisingly, if the mass or moment of inertia of the spool increases, this
acceleration decreases, for the same force. We won’t worry about solving for the moment of

inertia here.

Now, I want to do something radical: what happens if I pull the spool as before, but now

flip it over? That is, the setup now is:

r —
F >
4
—
S
Does the spool
(a) accelerate right, (c) does not accelerate.

(b) accelerate left, or

Well, let’s analyze this system identically to what we did before. The net force equation

is
F+ f=ma, (8.95)
or in components,

F—f=ma. (8.96)
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The torque of the friction is identical to earlier

Now, the torque from the force Fis in the opposite direction, by the right-hand rule

L FPxF =% @
F

So now, Newton’s second law for rotations is
T+ 7= Id = Tr—Tr=Rf —1F =la. (8.97)

As before, we eliminate f from the net force equation and relate angular and linear acceler-

ations with a radius factor,
1
R(F —ma) —rF = i (8.98)

Rearranging and solving for a, we find

R—r

= 8.99
“ mR—i—é ( )

Because r < R, this is still positive, so the spool still accelerates right. However, its magni-
tude is less than earlier because of the subtracted factor in the numerator.
Let’s test this out! (See https://youtu.be/Zax2Qewl1dE)

8.6.2 Rolling Down a Ramp

Finally for this chapter, I want to analyze the dynamics of an object rolling down a ramp:

BTl


https://youtu.be/Zax2Qew11dE
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Here, I have drawn the relevant forces for acceleration down the ramp (no normal force),
and the angle of the ramp is 6, while the radius of the object is R. We will also assume that
the mass and moments of inertia of the object are m and I, respectively.

As before, let’s analyze the relevant forces that accelerate the object down the ramp:
Zﬁw:mé’m = Fysin — f =mgsing — f = ma, (8.100)

where a is the acceleration of the center-of-mass of the object.

Now, let’s analyze torques for rotation about the center-of-mass of the object. Gravity
has no torque because it acts at the center-of-mass; its lever arm is 0. Further, though not
illustrated, normal force also exerts no torque because it acts at the surface of the object in
the direction of its axis of rotation. The only force that exerts a torque is friction, so
a

Tf:fR:[a:IR

(8.101)
where we replaced angular acceleration o with linear acceleration via a = Ra, because the
object does not slip.

Solving for friction f in the torque equation, we find

1

7 (8.102)

f=

and inserting it into the force equation we have

1
mgsin 0 — 4 =ma, (8.103)
or, solving for acceleration a,
in 6
o= (8.104)
1+ or

Thus, we immediately see that objects that roll without slipping accelerate down a ramp
more slowly if they have a larger moment of inertia, I. However, two objects, identical in
shape, but that differ in size and mass, accelerate down the ramp identically.

Let’s test this out! (See https://youtu.be/SpJVbuJMIks)


https://youtu.be/SpJVbuJM9ks
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Chapter 9
Angular Momentum

In this chapter, we will finish our discussion of rotational dynamics with a discussion of the

final space-time conservation law.

9.1 Conservation of Angular Momentum

Let’s start by reminding ourselves about the Newton’s second law for rotational motion:
Fnet - [&, (91)

where Tyt is the net torque about a defined axis, I is the moment of inertia of the system
about that axis, and & is the angular acceleration. As an angular acceleration, @ is the time
derivative of the angular velocity:

ddw

V= 9.2
a=— (9.2)

9.1.1 Newton’s Second Law with Angular Momentum

If the moment of inertia if constant, % = 0, we can re-write this Newton’s second law as
do d
Toet = 1— = —(1J). 9.3
=15 = (1) (9.3

In this form, it is very similar to Newton’s second law for linear motion:

, d
Foot = a(mv), (9.4)

165
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where we called mv = p, the (linear) momentum. For Newton’s second law for rotational

motion, we instead refer to /& as the angular momentum L,

L=13, (9.5)
and so Newton’s second law for rotations can be equivalently written as
d -
Taet = — L. 9.6
Thet dt ( )

That is, changes in angular momentum are enacted by external torques (just like forces affect

linear momentum).

Note that, by Newton’s third law, the torques internal to a system always cancel pairwise,
just like we observed with linear momentum. So, if there are no external torques, then the

time derivative of angular momentum is 0:

| =

L=0, if Thet=7m=0. (9.7)

=

t

That is, angular momentum is conserved if there are no external torques.

9.1.2 Spatial and Temporal Symmetries and Their Conservation

Laws

Uh oh, we have a new conservation law, so you know that that means a digression into its
consequences by Noether’s theorem. Angular momentum conservation means that rotation
about (at least) one axis is unchanged in time, defined by L=1I3 Ifa system has non-
zero angular momentum, then that system sweeps through arbitrary angles. Equivalently,
the orientation of the system continually changes. If angular momentum is conserved, then
there is no special angle or orientation; all orientations are equivalent and exhibit the same
laws of physics. This is just to say that conservation of angular momentum means that all

orientations are equivalent, or that there exists a symmetry of spatial rotation of our system.

So we have identified the following symmetries and conservation laws in our study this

course:
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Symmetry Conservation Law
Time Translation Energy
Spatial Translation Momentum
Spatial Rotation Angular Momentum

We believe that in our universe, energy, momentum, and angular momentum are all con-
served. So, with that assumption, what does our universe look like if it is unchanged by the
actions of time translation, spatial translation, and/or spatial rotation? I'll leave that for

you to think about.

9.1.3 Rotation About Two Orthogonal Axes

Coming back from esoterica, let’s see if we can understand some consequences of angular

momentum conservation.

Example

As a concrete example, I'm going to perform the following demonstration. I am first going
to get our old friend the bicycle wheel spinning pretty fast. Then, I will stand on a platform
that is free to rotate and then I will pick up the wheel. Now, with the wheel in hand, I will

tilt the wheel, so it makes a non-right angle with respect to the ground. A picture of this is

rotation
/\

—

L®

/V

platform
What happens?

(a) Nothing (c) I start rotating with & |

(b) I start rotating with ¢ 1

Initially, the direction of angular momentum was into the page, ® L. After I tilted the

wheel, its angular momentum picked up a component in the downward vertical direction.
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However, my tilting the wheel was an internal torque to the system of the wheel and me, and
there were no relevant external torques. Therefore, angular momentum will be conserved.
That is, the direction of the combined angular momentum of me and the wheel must still
point into the page. To accomplish this, I must have an angular momentum that points

upward, to cancel the change in angular momentum of the wheel.

Example

That’s not the only way to affect angular momentum. Let’s consider another demonstration;
this time, where I am rotating standing on the platform with my arms outstretched. Then,

I will bring my arms in close to my body. An illustration of this is

bring arms in

What happens when I do this?

(a) Angular velocity increases (c¢) Angular velocity stays the same

(b) Angular velocity decreases

As with tilting the wheel, bringing my arms in is a completely internal action to the
system of, well, me, so it does not affect my angular momentum. Therefore, my angular
momentum before and after moving my arms is unchanged. However, with my arms out-
stretched, I have mass far from the axis of rotation and so by bringing them close to my
body, I can decrease my moment of inertia significantly. So, if my initial moment of inertia

is larger than my final moment of inertia, I; > I, and angular momentum is unchanged,
Li=L; = L& =13, (9.8)

my angular velocity must increase for this equation to hold.
Let’s try these out! (See https://youtu.be/InM_mdY-6FI)


https://youtu.be/InM_mdY-6FI
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9.1.4 Angular Momentum for Linear Motion

We will come back next section with more, crazier, predictions from Newton’s second law for
rotations. But for the rest of this section, I want to introduce another, equivalent, definition
of angular momentum that significantly extends its realm of applicability.

Let’s go back to the definition of torque:
F=FxF, (9.9)

where 7 is the lever arm, the position vector that stretches from the axis of rotation to
the point at which the force F is applied. Now, using linear Newton’s second law, we can

replace F with j—f :

(9.10)

1S

T=rx F=7x

If the lever arm vector 7 is constant in time, dr/dt = 0, we can move the derivative all the

way to the left:

R T

T=rxF=—(xp). (9.11)
We had already established that torque is equal to the time derivative of angular momentum,

. ds o d o

therefore, we have another definition of angular momentum, where

-

L=7xp. (9.13)

Let’s see if this makes sense for our rotating wheel:

—

p
Notation
FXP ®

&l
N ®

What about 7xp? Again, 7is the vector from the axis of rotation to a point on the wheel that
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is rotating. The momentum of such a point on the wheel is in the direction tangent to the
wheel. A point on the wheel is moving in a circle, and the direction of velocity /momentum
of circular motion is tangent to the circle. So, to determine the direction of 7 x p, we use
the right-hand rule: point our fingers in the direction of 7, curl in the direction of p; and our
thumb points in the direction of ¥ x p'= L. This is exactly what we get with L = I& and
the right-hand rule for angular velocity!

This definition of angular momentum as 7 X p enables us to define angular momentum
even for linear motion of a particle. Let’s imagine that a particle is mass m with velocity v

is passing by

There are no external forces on the particle, so it travels in a straight line. Now, we can just

pick some arbitrary point in space and call it the “axis of rotation”:

axis of rotation

What is the angular momentum about this axis of rotation? First, the direction is
L=7Fx} ®, (9.14)
into the page, by the right-hand rule. Next, its magnitude is
IL| = |7 x p] = rpsinf = pb. (9.15)

The perpendicular distance b = rsin 6 is called the impact parameter, and is the distance
of closest approach of the particle to the axis of rotation. Because there are no external forces,
the impact parameter is constant for a given trajectory, and so too is angular momentum
constant as there are no net torques.

As to why linear motion can correspond to non-zero angular momentum, note that as

the particle travels, it sweeps out angles with respect to the axis of rotation over time:

x1 x2
b Ao
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The distance o — 21 that the particle travels in time dt can be expressed as

T N R I WO )
> T tan(0 4+ df)  tanf  tanf \ 14+ % T sin?6’

cos 0 sin 0

(9.16)

with the approximation that the change in angle df is very small, df < . Note that it takes

time
_ _ b
vdt =z — 1y = —dt (9.17)
m

to travel this distance. Equating these expressions for the distance, we have

bdd P mb? db
sin? m sin®@ dt p ’ ( )
where we note that
df
- _ 9.19
“ —u, (919

and the distance r from the axis of rotation to the particle’s location is

b
— 9.20
" sin@’ ( )
so the moment of inertia is
b2
I=mr’l=m (9.21)

T 9 A
sin? 6

as expected!

9.2 Precession

Previously, we had rewritten Newton’s second law for rotations in terms of the change

imparted on angular momentum L,

dL

Thet = d_

T (9.22)
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where [ = I& = 7 x p, the product of the moment of inertia and angular velocity or the
vector cross product of the position vector 7 from the axis of rotation to the location of
the particle which carries momentum p. If there are no relevant external torques, Thet = 0,
angular momentum is conserved or unchanging in time. By Noether’s theorem, angular mo-
mentum conservation means that the laws of physics are independent of orientation about
the identified axis of rotation. In our universe, we believe that angular momentum is con-
served so this orientation-independence has profound consequences on the structure of the
universe.

In this final lecture on rotations, we will relax the assumption of 7, = 0 to understand

the physics of a non-trivial Newton’s second law for rotations.

9.2.1 Forces Applied Parallel to Angular Momentum

The first thing we will do is to understand a system in which 7, is secretly zero. Let’s
say I am rotating on the non-OSHA approved rotating platform with my arms outstretched,
holding 2 kg weights in each hand. While rotating like this, I release the weights. What

happens? Does my rotation rate
(a) Increase (b) Decrease (c) Stay the same

To analyze this problem, the fact that the weights fall due to gravity is completely a red
herring and doesn’t affect the result. So, let’s instead imagine that we are just rotating in

space, far from any stars. Before releasing the weights, I and the weights are rotating as

r

—
.
T
and our angular momentum is
Liot = Ipew + 2mrw . (9.23)

When I release the weights, they cease their circular motion and travel in a straight line

tangent to the original circular motion
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U
m
—
(N
_/
N T
m
U

Note that the speed v is just v = rw, so that the angular momentum of the two masses with

respect to my head (the axis of rotation) is
Linasses = 2|7 % p| = 2r(mv) = 2r(mrw) = 2mriw. (9.24)

This is identical to before releasing the masses. Simply releasing the masses exerted no
torque so necessarily angular momentum is conserved in this reaction. Therefore, if angular
momentum is conserved and the angular momentum of the masses didn’t change, then so
too must my angular momentum remain the same.

Let’s test this out! (See https://youtu.be/g7QLKoMQGOM)

9.2.2 Torques Applied Orthogonal to Angular Momentum

Okay, good enough, now let’s analyze another rotating system. We’re going to bring back
our bicycle wheel and get it rotating. Once rotating, I'm going to only hold it by a rope
attached to the end of one of the handles. A picture of this is

rotation

~

rope

—_.>
L

My question to you is: what happens? What does the wheel do once this system is released

to the world? Possible answers include:


https://youtu.be/g7QLKoMQG0M
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(a) Nothing, remains stationary (c¢) Revolves around rope

(d) Oscillates like a pendulum about end of

(b) Falls into a vertical position rope

To answer this question, let’s first consider what happens if the wheel were stationary and
not rotating. In that case, we will analyze the torques of the system about an appropriate
axis. Note that the end of the rope is stationary in this setup, so we will call the end of the

rope the axis of rotation. Then, let’s draw the forces on the wheel:

N,

=

axis

—

Iy

There is tension in the rope, and gravity acts at the center-of-mass of the wheel. The tension
exerts no torque because it is applied at the axis of rotation. By contrast, gravity does exert
a torque about the axis because it is displaced from the axis and an angle of 90° with respect

to 7. By the right-hand rule, the direction of this torque is

—

xF, ®, (9.25)

—

Tg =

=

into the page, while the magnitude is
|7yl = rFy =1mg, (9.26)

which is indeed non-zero.
Of course, we know what happens when we release the wheel in this case: it falls, swinging

clockwise, and so has angular momentum into the page
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rotation

L ®

dLl
dt

Okay, that was easy. Now, let’s get the wheel rotating and think about what happens.

This is exactly as predicted by 7 =

We have the same torque as in the non-rotating case

rotation

|

Tnet &

But now, we have a non-zero angular momentum, and that makes all the difference. Let’s
first consider what happens a very short time after we release the system to the wild. To do

this, let’s draw an overhead picture of the system which will clarify what’s going on:

..
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For argument’s sake, let’s call the initial angular momentum

L; = Li, (9.27)
and the direction of torque is then

Tnet = T - (9.28)

Then, by Newton’s law for rotations, we have

o dL A
T=— = TR ————

= (9.29)

where L ¢ is the angular momentum evaluated at a time At after I release the system. Solving
for L 7, we find that

Ly =Li+ Atr], (9.30)

that is, the angular momentum picks up a y component. The picture of this is

So apparently the angular momentum just rotates about the rope! We can continue this to
a later time by asking what happens to L 7 because of the torque, etc. A rotating wheel does
not fall: if it did, the direction of the change of angular momentum would be inconsistent

with Newton’s second law.

This extremely weird rotational phenomena is called precession. If a torque acts parallel
(or anti-parallel) to angular momentum, then it acts to increase or decrease the angular
velocity. However, if a torque acts perpendicular to the direction of angular momentum, as
in the case at hand, it acts to precess, or rotate, the angular momentum’s direction about
the axis of rotation that is perpendicular to both the torque and angular momentum. In

this case, we have
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direction of precession
\}
QT

e

/v L

new precession axis

Let’s see this in action! (See https://youtu.be/cj_cC53IgXA)

9.2.3 Precession as Circular Motion of Angular Momentum

Let’s now study Newton’s second law and see if we can massage it into an interesting form
to solve for precessing angular momentum L valid at all times ¢. Let’s start by putting down

coordinates:

With this setup, note that the vector 7 from the origin/axis to the center of mass of the

wheel is

r=xl+yj=rcosfi+rsind), (9.31)


https://youtu.be/cj_cC53IgXA
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where r is the distance from the axis to the center of the wheel and 6 is the angle the vector

makes with respect to the x axis, in the xy plane. Then, the torque is

~

%’:Fxﬁg:—mg(rcos@i+rsin9j)Xk (9.32)

= —rmg (sinfi — cosf}) .

Note that the direction of angular momentum is radial, away from the origin, so we can

express it as

L=LcosOi+ Lsindj. (9.33)

Because the torque acts perpendicular to angular momentum, the magnitude of angular
momentum is fixed, just like the magnitude of linear momentum is fixed if a force acts

perpendicular to momentum. Now, Newton’s second law says that

=

dL dcosf dsin @
r=— — inf6)i j=1L i+ L ). .34
T= = (—rmgsin )i+ (rmgcosf)j prak + pra (9.34)
Let’s focus on the 7 components of this equation:
dcos
—rmgsing = L2527 (9.35)
dt
Using the chain rule, we have
dcos 6 dcos df
L C;: = (;098 pri —Lwsinf = —rmgsin6 . (9.36)
Canceling factors, we find that the angular velocity of precession is
rmg
=2 9.37
w=""0 (9.37)
which is constant. We can do the same analysis for the 7 component,
dsin 6 dsin 0 do
L = =1L 7 %—LwCOSQ—ngCOSH, (9.38)
or again, that
w=""9 (9.39)
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Therefore, the angular momentum under this precession is

L = Lcos (%t) i+ Lsin (%t) 7 (9.40)

Note that this sweeps out a circle over time, of radius L and at rate w = “72. That is,

precession is nothing more than uniform circular motion of angular momentum.
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Chapter 10
Oscillations

In these final lectures, we are going to study the general phenomena of oscillations. We have
encountered oscillations at several points throughout this course. First, when we introduced
circular motion long ago, we had expressed the position vector 7 of an object undergoing

circular motion as
7(t) = rcos(wt)i + rsin(wt)], (10.1)

and this vector looks like

=

ISA 4

and it revolves counterclockwise at a rate of w rad/s. The radius of the circle is 7.

At the end of the previous chapter, we introduced precession, or the uniform circular
motion of angular momentum due to a torque applied perpendicular to the direction of
angular momentum. We had found that the resulting angular momentum vector L can be

expressed as

L(t) = Lcos (%t) i + Lsin (%t) 7, (10.2)
181
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where L is the magnitude of the angular momentum (constant in time) and 7 is the magnitude
of the torque applied perpendicular to angular momentum. This precession or “uniform
circular motion” of angular momentum is exactly analogous to the uniform circular motion
described earlier. If a force is applied exclusively perpendicular to velocity /momentum, then
no work is done on the object (no speed is changed) and only the direction of motion is
affected. So, precession and uniform circular motion are very much so the same phenomena,

just manifest in different systems.

10.1 Kinematics of Oscillations

In what sense, however, are either of these systems “oscillating,” or swung back and forth (in
Latin)? Instead of considering the circle swept out as a function of x and y position as time
passes, let’s just focus on one coordinate; say, the x-coordinate of uniform circular motion

as a function of time. That is, let’s just focus on the function
x(t) = rcoswt. (10.3)

What does this look like? Plotting it, we have

T4 amplitude

ANEVA VA,
VN

period

This position versus time graph illustrates clearly “oscillation” and the graph has a number
of features that we give names to. First, the maximum distance of the oscillation away
from the abscissa (horizontal axis) is called the amplitude of the oscillation. Because the
maximum value of cosine is 1, the amplitude is simply the coefficient of cos wt; in this case, the
distance r. Additionally, this oscillation repeats its pattern over a given length of time. The
minimal length of time over which it repeats is called the period of oscillation. Colloquially,
we often call this oscillation a wave, but waves (properly) exhibit more phenomena than a
generic oscillation. This oscillation that is controlled by a cosine (or sine) is referred to as a

sinusoidal oscillation.
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Okay, we've got our bearings. Now let’s take a look at the y-component of uniform

circular motion. We have the formula

y(t) = rsinwt, (10.4)

and a plot of this as a function of time is

2 Y

| ANVANIYAY
RERVERV

: 2
period T = alll
w

Note that this oscillation has the same period and amplitude as for the x coordinate. How-
ever, we say that x(f) and y(t) oscillations are 90° (or 7/2 radians) out of phase because

their values at t = 0 are different, by an angular factor of /2.

To see this graphically, let’s plot them on the same plot:

SANINA
ENVANVAN

/2

A

Over one period T', wt increases by 27
2
w(t+T):w<t+—>:wt—|—27r, (10.5)
w

and so we also say that a period corresponds to an angular displacement of 27 (like going all
the way around a circle). Note that from z(t) at t = 0, one has to travel one-quarter period
in time to get to the same point of y(¢). One quarter period is 27 /4 = 7/2 radians, thus the
/2 out of phase.

Symbolically, let’s manipulate sinwt into a form with coswt. To do this, note that for

y(t) to overlap x(t), it needs to be moved left by a phase angle /2. That is, at t = 0, it
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needs to have an argument that is smaller by 7 /2 that in sinwt form. This is just to say
that

sinwt = cos (wt - g) . (10.6)
Let’s see if this makes sense. First, at ¢ = 0, we have

sin0 = cos (o - g) —0, (10.7)

13

which is true. Now, regarding the “—m/2”; this is more subtle. In principle, we could have

had the relationship
sin wt = cos <wt + g) : (10.8)

and this would also have satisfied the requirement at ¢ = 0. However, it doesn’t work
immediately after. Let’s go back to our unit circle:
decreasin
g A 7.(./2
Y

8Y

—7/2 __”

increasing

At t = 0, we have the two options: a phase of /2 or —7/2, which I have illustrated. As time
increases, we move around the unit circle in a counterclockwise manner. This means that,
from phase point 7/2, for example, the z-component (cosine) decreases, while from phase
point —m/2 the x-component increases. Looking at the graph of sinwt, as ¢ increases, does

sin wt increase or decrease? It increases, so therefore
: T
sin wt = cos (wt — §> : (10.9)

Another symbolic way to identify the same result is simply by taking the derivative and
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then setting t = 0. Note that

— sin wt

o = wcoswt|,_y=w >0, (10.10)

t=0

and also that

i cos (wt + E)

I 5 = —wsin (wt + E)

2

= Tw, (10.11)
t=0

t=0

13

so for these to agree, we must take the “—m/2” phase factor.

Finally, I just want to note that a generic sinusoidal oscillation can be expressed as
z(t) = Acos(wt + ¢y) , (10.12)

where A is the amplitude, w is the angular frequency, and ¢q is the phase:

€T A

NN N
IV VAN

Po

Note that +¢o means that the wave is shifted left. This general form of the oscillation follows

from the angle addition formula
cos(wt + ¢g) = cos ¢y coswt — sin g sin wt . (10.13)

We’ll use this formalism to understand physical phenomena next section. To end this section,

I want to ask a couple of questions.

Example

First, we had said that uniform circular motion is described by the vector

7(t) =rcoswti+rsinwtj. (10.14)
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Note that the amplitudes of the two components are identical, . What if they are different,

with 71 > 79,
7(t) =1 coswti+ rosinwt . (10.15)

What does the trajectory of the object look like now?

N,
-
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The answer is (¢). Because r; > 1y, the trajectory goes farther from the origin in the z

. [
\

direction than in the y direction. Actually, this trajectory is nothing more than an ellipse

with semimajor axis r; and semiminor axis ry
Ya

T2

N,
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Example

We had also said that sin wt is out of phase of cos wt so the vector for uniform circular motion

is
- A T\ .
7(t) = rcoswt i + r cos <wt - §> - (10.16)

This out of phase—ness is vital to produce a circular trajectory. However, what if the phase

difference were only —m /4, instead of —m /27 That is, what trajectory would the vector

—, A ™ A

7(t) = rcoswt i+ rcos (wt— Z> 7, (10.17)
sweep out?

YA YA
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(d)
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The answer is (b). This is very tricky, but one way to see it is to evaluate 7(¢) at

~
D
AN
)

wt = 0,7/2,7,3r/2 and connect the dots. Decreasing the phase difference between the z-
and y-components rotates and smushes the trajectory. Consider what happens if that —m /4

is turned into 0. What is the trajectory now?
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10.2 Simple Harmonic Oscillators

Previously, we introduced the language of oscillations, specifically sinusoidal oscillations. We

had said that an oscillating system can, in general, be expressed as
z(t) = Acos(wt + ¢y) , (10.18)

where A is the amplitude of oscillation, w is the angular frequency of oscillation, and ¢ is
called the phase (factor) of the oscillation, which just quantifies where the object starts at
t = 0. Here, z(t) denotes anything that might oscillate: position, angular momentum, angle,
etc., and a different physical system will have a different quantity that oscillates. In this

lecture, we will use this general formula to analyze some familiar physical systems.

10.2.1 The Pendulum

We’ll start with the pendulum, which as I have illustrated before, is nicely exhibited with
a bowling ball attached to the end of a hanging rope. Let’s remind ourselves of what this
pendulum is doing. I release the pendulum from some initial position and then it swings
back and forth, that is, oscillates, like so:

b/

On this figure, I have denoted the mass of the bowling ball as m and the length of the rope
as [. To analyze the oscillation of the pendulum, let’s draw the free-body diagram of the

mass

T
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T is the tension in the rope and ﬁg = myg]) is the gravitational force.

As the mass oscillates, it remains a fixed distance [ from the axis of oscillation. That
is, the mass sweeps out the arc of a circle as it swings back and forth. As such, there is no
motion perpendicular to this circle, so we know that forces that act in the direction of the
axis of oscillation, i.e., centripetal forces, act only to change the direction of velocity of the
mass.

So, the relevant force for oscillation is the force tangent to the circular arc, that is
responsible for the ball speeding up and slowing down while it oscillates. What is this force?
Well, the tension is exclusively centripetal, so not that. The only relevant force then is a

component of gravity that depends on the angle of the rope with respect to vertical:
Fiee = —mgsinf. (10.19)

Note the lack of a vector: we can consider the oscillations as one-dimensional. They are just
fixed to the arc of a circle. Also notice the “—” sign: this is a restoring force acting to always
pull the ball toward 8 = 0 where the rope is vertical.

Now that we have this force, we want to use it to determine Newton’s second law.

Newton’s second law is of course

d*x

F=ma=m—, 10.20
but we need to figure out what the position z is. Recall that the motion of the pendulum is
along the arc of a circle, so the distance x is just some distance measured along the arc of

this circle:

Now, let’s take derivatives of x = [6:

d*r  d? d*0 .

The length of the rope [ is constant, so it just pulls out of the derivative. Then, our Newton’s
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second law is
—mgsinf = mlf . (10.22)

This is a differential equation for the angle #, the angular dependence from vertical as a
function of time. It is called a second-order differential equation because there are at most
two derivatives of 6 present in the equation. Further, it is a non-linear differential equation
because a non-linear function of #, namely sin 6, is present in the equation. As a non-linear
second-order differential equation it is extremely challenging to solve (see the Wikipedia page
on “Pendulum (Mathematics)” for details).

So it might seem like we are up a creek without a paddle as they say, and can’t go further.
If we only consider small angular displacements from vertical, that is, # < 1 in radians, then
the sinf non-linear function can be simplified via Taylor expansion. For 6 < 1, sinf is

approximately
sinf=0— —~+---~0, (10.23)
which is a linear function of . With this assumption, our Newton’s second law becomes
—mgf = mlf , (10.24)

which is simple and can easily be solved. As we are studying oscillations, well, simple har-
monic oscillators, we will just make the ansatz that the solution to this differential equation

can be written as
0 = Acos(wt + ¢p) , (10.25)

for some amplitude A, angular frequency w, and phase ¢y. Let’s just plug this into the
differential equation and see what we find.
The second derivative of 6 is:
2

d d
@A cos(wt + ¢p) = A% (—wsin(wt + ¢g)) = —Aw?® cos(wt + ¢p) , (10.26)

so Newton’s second law is

—mg (A cos(wt + ¢g)) = —mAlw? cos(wt + ¢y) , (10.27)
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or, canceling factors,
g=Iw?. (10.28)

Note the miracle that happened here. We initially had a second-order differential equation
we had to solve. With our sinusoidal ansatz, we transmogrified the differential equation into

a second-order algebraic equation that is trivial to solve:

w= \/% (10.29)

This general procedure of transforming a differential equation into an algebraic equation

with a sinusoidal ansatz is called a Fourier transform, after Joseph Fourier, a 19th century

French mathematician. Fourier, among other things, first described the greenhouse effect.
So this Fourier transform immediately gives us the angular frequency, so our solution for

the angle as a function of time is

0(t) = Acos <\/gt + ¢0) . (10.30)

What about A and ¢y? The differential equation can’t help us there, but the initial conditions

of the pendulum can. Initially, if we hold the pendulum an angle 6y from vertical:

by energy conservation, we know that at any later time, the angle of the pendulum can
never be larger than 6y. That is, 6y is the amplitude of oscillation, and this amplitude is the

angular displacement at t = 0. Thus, ¢y = 0 and
_ 9
0(t) = 6o cos (\/;t) . (10.31)

There are a few interesting things to note about this result:

Whew!
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e The velocity of the pendulum is

o(t) = l‘;—f = —0/glsin (ﬁt) . (10.32)

Note that the velocity is 90° (= 7/2) out of phase with the position of the pendulum.

e We could have guessed w o /g/l by dimensional analysis. In the statement of the
problem, the only relevant dimensionful quantities were acceleration g, rope length [,

and mass m. The only way that these can combine into units of frequency (time™!) is
g/l.

e There is a bit of numerology regarding the history of the pendulum and SI units. Note

_ L g
f_%\/;, (10.33)

and so the period of the pendulum is

that the frequency f is

1 l
T=-=2m/~. 10.34
7 g (10.34)

Why ¢ = 9.8 m/s*? Well, note that the period of the pendulum is independent of
amplitude 6y, so a pendulum of length [ is a very good, regular keeper of time. This
has been known for at least 400 years. The length [ is very easy to measure, but g is
more subtle. Wouldn’t it be very convenient if the hard thing to measure, g, canceled

with the hard number to express, 7?7 Indeed, note that
72 =9.8696- - - (10.35)

eerily close to the SI value of ¢!

10.2.2 The Spring

To end this lecture, I want to briefly introduce the spring simple harmonic oscillator
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000000900,

| E—
a

We have a mass m connected to a spring with constant &, initially displaced from equilibrium
by a distance a. My first question to you is: using dimensional analysis, what is the angular

frequency w of the mass as it oscillates?

(a) w=Vak (b) w=,/% (c) w= /T (d) w=avkm

m

Let’s solve Newton’s second law and see what we find! The spring force, Hooke’s law, is
F=—kx, (10.36)

and so Newton’s second law is
—kx = mi . (10.37)

This is almost exactly similar to Newton’s second law for the pendulum! So, let’s use our

ansatz for simple harmonic oscillation to solve this:
(t) = Acos (wt + ¢o) i(t) = —w?Acos (Wt + dp) (10.38)

Plugging this into Newton’s second law, we have

—kAcos (wt + ¢g) = —mw?Acos (wt + ¢y) , (10.39)
or that
k
=4/ —. 10.4
w - (10.40)

Further, if the spring is initially stretched by length a, conservation of energy states that

its displacement from equilibrium can never be larger than a. Therefore, the amplitude is a

/ k
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10.3 Two Other Topics on Oscillations

In this final lecture, we are going to wrap up a couple of loose ends, extending and connecting
some earlier lectures and just introducing traveling waves. As we have for the previous

several lectures, we continue studying oscillations, as modeled by the sinusoidal function
x(t) = Acos(wt + ¢p) (10.42)

where A is the amplitude, w is the angular frequency, and ¢, is the phase of oscillation.
We'’ve seen this formula applied in numerous cases already, and here we will end with two

more.

10.3.1 Physical Pendula

The first system we will study is that of a physical pendulum, a realistic object that oscillates
about an axis. The object we will consider here is a solid hemisphere, and we are asked to

identify the period of oscillation when set upon its rounded end and slightly perturbed:

axis -

To be able to solve this problem, we will need to know both the center-of-mass of the
hemisphere, as well as its moment of inertia about the axis that sits on the flat part (as
illustrated).

Let’s first find the center-of-mass. Let’s call the total mass of the hemisphere M and

note that because it is, um, half of a sphere, its volume is

1 2
Vol = 5Volsphere = 5”337 (10.43)

where R is its radius. Then, the density of the hemisphere is

M _ 3M

P
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Recall that the position vector of the center-of-mass of an object is
¥ ! / rd (10.45)
Tem = — [ rdm, .
M

where dm is a small mass and 7 is the position vector of that small mass. Using the fact

that we can write the small mass as
dm = pdV , (10.46)

where dV is a small volume, the center-of-mass is

Now, a while ago we had identified the best or easiest way to analyze a sphere; that is,

by expression the small volume in spherical coordinates. Then, we had found that
dV =r*sinfdrdfde, (10.48)

where r is the radial coordinate, # is the polar angle, and ¢ is the azimuthal angle. So, for

our hemisphere, we just need to calculate

L1 L9
Tem = oy ///rr sinf dr df d¢ . (10.49)

This requires two things: figuring out what 7 is, and what the r, , and ¢ bounds of
integration are.
Let’s draw the hemisphere more suggestively as

AZ

<Yy
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Recall that the polar angle for a sphere (lines of latitude) range over § € [0, 7|, but for a
hemisphere, we only get from the North Pole to the equator. So, for a hemisphere, 6 €
[0,7/2]. The azimuthal angle still ranges over ¢ € [0,27) because for every 6, we still can
go all the way around a circle. Similarly, € [0, R], the overall radius of the sphere. So, the

center-of-mass calculation becomes

1 2r  rw/2 PR
Fem = W/o /0 /0 7r? sinfdrdf dg. (10.50)

What is the vector 77 Well, by the illustration earlier, we immediately see that the x-
and y- components of the center-of-mass vector 7, are 0. The only challenging component

to evaluate is the z-component. Let’s consider the illustration:

So, we see that z = rcosf. Plugging this into the expression for the center-of-mass, we see
that

2r /2
Zem = Vol / / (rcos ) r* sin 6 dr df d¢ (10.51)

1 R \ /2 . 2w
= Yol (/0 r dr) (/0 cosf smé’d@) (/0 d¢) .

We can then do these integrals one at a time. The r and ¢ integrals are easy:

</0Rr3 dT) (/02 d¢) = R—4 2m = WR; (10.52)

We can make a u-substitution for the 6 integral. If we set

u = cos@, (10.53)
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then the 6 integral becomes

w/2 1 1
/ cosf sinf df = / udu = —, (10.54)
0 0 2

very simple! Putting it all together, we have

3 1 R*1 3
=g 2 _ R, 10.
z 27TR37T2 5 8R (10.55)

That is, the z-coordinate of the center-of-mass is a distance of gR from the flat side of the
hemisphere. Does that make sense?

Now, on to calculating the moment of inertia. This is actually very simple with an

observation. Let’s draw a sphere with an axis of rotation that passes through its center:

o

Let’s say that this sphere has radius R and mass 2M. In this case, we know the moment of

inertia is
2 2
]sphere = 5(2M)R . (1056)

Now for the tricky bit. Let’s imagine that this sphere is composed of two hemispheres, each

of mass M, such that the axis of rotation lies on their flat faces. Then, it is clear that
2 2
Isphere = 2Ihemisphere =2 EMR y (1057)
or that the hemisphere moment of inertia is simply

2
Ihemisphere = 5MR2 . (1058)
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10.3.2 Traveling Waves

As a final topic in this course, we will but briefly introduce traveling waves. We’ll start
this by consideration of waves on a string. First and foremost, there is no net motion of
the string, even though it appears that the string, or the wave on it is moving. What is
happening is that each part of the string is oscillating up and down, but in a way that makes
motion to the right appear, but actually doesn’t happen.

So, if this string-wave is just oscillation of some flavor, we must be able to express the

vertical displacement of any part of the string as
d(t) = Acos(wt + ¢o) , (10.59)

where A is the amplitude of displacement and w is the angular frequency. This is simply
related to how fast I move my hand up and down to create the wave. What is the phase
¢o? To answer this, let’s consider a snapshot of the wave at a fixed time t. Then, the

displacement as a function along the rope is

d(t fixed, x)

ANVANN
VARV

Because we fix time to, say, t = tg, wt is constant. Therefore, the only way that the

displacement can vary as a function of position is if the phase ¢y depends on position

$o = do(x) - (10.60)

What are the properties of this phase and its dependence on x? Note that the wave repeats
itself after a minimal distance. We call the minimal distance over which the wave repeats

itself the wavelength A\

NANANS
VARVARN

+—>
wavelength A
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Compare this to the definition of the period, T. Therefore, if the functional form of the

displacement repeats every wavelength, the position-dependent phase must satisfy
Go(z + ) = ¢o(x) + 27 (10.61)
The simplest way to do this is if
do(z) = —x =ka. (10.62)

Here, we call & the wave number, and it has a form similar to that of angular velocity,

2T
= —. 10.63
w= (10.63)

Then, we have that the displacement of the rope as a function of time and position is

d(t,z) = Acos (wt — kz) . (10.64)

“_»

The relative sign is because the wave travels to the right. Compare this with our

identification of ¢ for simple harmonic oscillation.

So, where does this perceived motion of the wave come from? Well, over time 7', the
rope’s displacement repeats itself and in that time, the wave repeated itself over a distance
A. Then, the speed of the wave, that is, how fast the bumps appear to move right is

A
VUwave = T = % = Uphase - (1065)

This particular wave speed is called the phase velocity. If we are able to express the
angular frequency w as a function of the wave number k, then we can define another speed

called the group velocity,

dw
Vgroup = % . (1066)
As a final mystery, recall that the kinetic energy of an object is
Lo 1 .
E=_—-mv®=—(mv)" = ——, (10.67)
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related to momentum p. The speed of the object is

d p* 2
b _P_P_ (10.68)

U:%%_Qm_m

Fascinating! Is energy related to angular velocity w and momentum to wave number k7



Classical Mechanics (Glossary

acceleration: the rate of change of velocity with respect to time; the rate of change of the

rate of change of position
amplitude: the maximum displacement of a wave or oscillation from equilibrium

angular momentum: a quantity of a massive object associated with its rotation about

a fixed axis; if there are no torques on the object, angular momentum is conserved

angular velocity: the rate of change of an object’s angle about a fixed axis with respect

to time

azimuthal angle: the angle about a fixed axis ranging from 0 to 27

center-of-mass: the position of a collection of masses corresponding to the mean location
of the total mass; the point at which the net gravitational force acts for an ex-
tended object

centripetal acceleration: acceleration due to the change in an object’s direction of velocity

chain rule: the rule for differentiating a composition of functions, where the result is the

product of derivatives of each function in the composition
circular motion: motion of an object that travels in a circle

closed system: a system that is completely and perfectly isolated from any external envi-
201
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ronment

coefficient of static friction: the effective relative strength of the force of static friction

as a fraction of the normal force exerted by a surface

conservation: the property enjoyed by a quantity that remains unchanged through time

conservative force: a force whose action is a direct consequence of a change in potential

energy

cross-sectional area: the intersectional area of a plane that slices through a three-

dimensional object; the area of an object’s shadow

density: mass per unit volume

dimensional analysis: a technique for estimation from construction of a result from rele-

vant quantities requiring that the units are correct

displacement: a vector of the change of position of an object with respect to a given origin

dot product: the scalar product of two vectors that is proportional to the cosine of the

angle between them

elastic collision: a collision of two objects in which their net kinetic energy is conserved;

a collision in which no non-conservative forces are present

electron-Volt: a unit of energy; the energy gained by an electron that travels through an

electric potential of one Volt, approximately equal to 1.6 x 107! Joules

energy: the conserved quantity that measures a system’s ability to perform a task

equivalence principle: the fundamental assumption of Newton’s theory of universal grav-

itation that gravitational mass is equivalent to inertial mass
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escape velocity: the minimal velocity that an object needs to completely leave the gravi-

tational force of another object

force: an action that induces a change of velocity or momentum of an object

Fourier transform: the decomposition of a response into a linear combination of waves

with different frequencies

frame of reference: the natural coordinate system for an object at rest

free-body diagram: a representation of the forces on an object that act directly on its

center-of-mass

free fall: motion exclusively under the influence of gravity

friction: the force induced by two surfaces rubbing against one another

gedankenexperiment: German for “thought experiment”, a technique for establishing

physical consequences from experience and intuition alone

gravitational mass: the property of an object that is proportional to the gravitational

force exerted on that object

group velocity: the velocity of a “group” of objects; the derivative of the angular frequency

with respect to the wave number

Hooke’s law: the restoring force law that governs a spring; a force that is proportional to

opposite of the displacement from equilibrium

impact parameter: the distance of closest approach of a particle to its axis of rotation

impulse: force accumulated over time; the change in momentum

inelastic collision: a collision of two objects in which kinetic energy is not conserved; a
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collision in which non-conservative forces are important

inertial mass: the property of an object to oppose changes in motion; the quantity that

appears in Newton’s second law

inverse square law: a force that decreases inversely proportional to the square of the

distance between objects

Joule: the SI unit of energy; kilogram—squared meters—per squared seconds

kinetic energy: the energy of motion of an object

lever arm: the perpendicular distance between the point of application of a force and the

position with respect to an identified axis of rotation

moment of inertia: the property of an object to oppose changes in rotational motion of

an object about an axis

momentum: a measure of the linear motion of an object; momentum is conserved if there

are no forces acting on the object

Newton’s constant: the constant of proportionality between gravitational mass and grav-

itational force

Newton’s second law: the net force exerted on an object equals the object’s mass times

its acceleration, or its change in momentum with respect to time

Noether’s theorem: the statement that conserved quantities have corresponding symme-

tries of the laws of physics, and vice-versa

non-conservative force: a force that cannot be expressed as the change of an appropriate

potential energy

normal force: a force exerted normal or perpendicular to a surface
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open system: a system that interacts with its surrounding environment

order-of-magnitude estimation: an estimation technique that employs a product of ed-

ucated guesses for the numerical size of relevant quantities

pendulum: a weight hung from a rope or rod that swings under the influence of gravity

period: the minimal time over which a wave repeats itself

phase velocity: the velocity of an individual wave; the ratio of the angular velocity to the

wave number

polar angle: the angle on a sphere measured with respect to one of the poles that ranges

from 0 to

potential energy: the energy of an object that is stored for future use

power: the rate of expending energy per time

precession: the phenomena of rotation of angular momentum about an axis due to a torque

applied perpendicular to the initial angular momentum

projectile motion: motion of an object with a given initial velocity exclusively under the

influence of gravity

range formula: the expression for calculation of the horizontal distance of projectile motion

reduced mass: the effective mass that orbits the center-of-mass in a gravitationally-bound

system

restoring force: a force that is proportional to the opposite of displacement from equilib-

rium
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right-hand rule: the rule or prescription for defining angular velocity, angular momentum,

or torque from the direction of rotation or applied force with respect to an axis

rotational invariance: the property of a system that remains unchanged if it is rotated

by any angle

scalar: a quantity that remains unchanged under rotation

simple harmonic oscillator: a system described by Hooke’s law; a model of a mass at-

tached to a perfect spring

sinusoidal oscillation: an oscillation described by sinusoidal motion about equilibrium

spatial translation: movement through space

spring constant: the constant of proportionality between displacement from equilibrium

and force

static equilibrium: a state that exhibits no motion throughout time; a system on which

no net forces nor torques are exerted

tangent: a line that intersects a curve at a single point that has the same slope as that

point on the curve

Taylor series: the expansion of a function as represented by a polynomial of arbitrary order

theory of general relativity: the theory of gravitation introduced by Einstein that sub-
sumes Newton’s universal gravitation that describes gravity as the curvature of

space and time

time-translation symmetry: the property of a system if it remains unchanged by moving

through time

torque: an action that changes the angular momentum of an object
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traveling waves: a wave that physically moves from an initiating point to a displaced

location

unit vector: a vector of length 1 (unity) that exclusively encodes direction

universal law of gravitation: the theory due to Newton that describes the force of
gravitation between two massive objects as linear in their masses and inversely
proportional to the square of the distance between the objects

vector: a quantity that encodes magnitude and direction in multiple dimensions

vector addition: the method for adding together two vectors in which each component of

the vectors are summed

vector cross product: the product of two vectors that returns another vector; the result-

ing direction from the vector cross product is determined by the right hand rule

velocity: the rate of change of displacement per time

wavelength: the minimal distance over which a wave repeats itself

wave number: 27 divided by the wavelength

weight: the force of gravity near the surface of Earth that represents the minimal force

that one must exert to lift the object

work: force accumulated over distance; the change in kinetic energy

Work-Energy Theorem: the equality of work to change in mechanical energy
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