
Problem Set 1

Phys 342

Due February 7

Exercises, Due Friday, February 7

1. In lecture, we introduced the derivative matrix D defined as the derivative acting on a
grid with spacing ∆x. This matrix has the form:

D =


. . .

...
...

... · · ·
· · · 0 1

2∆x
0 · · ·

· · · − 1
2∆x

0 1
2∆x

· · ·
· · · 0 − 1

2∆x
0 · · ·

...
...

...
...

. . .

 , (1)

with only non-zero entries immediately above and below the diagonal. In this problem,
we will just study the 2× 2 and 3× 3 discrete derivative matrices.

(a) Explicitly construct 2× 2 and 3× 3 discrete derivative matrices, according to the
convention above.

(b) Now, calculate the eigenvalues of both of these matrices. Note that there should
be two eigenvalues for the 2×2 matrix and three eigenvalues for the 3×3 matrix.
Are any of the eigenvalues 0? For those that are non-zero, are the eigenvalues
real, imaginary, or general complex numbers?

(c) Determine the eigenvectors of this discrete derivative matrix, for each eigenvalue.
Don’t worry so much about the normalization of the eigenvectors; for simplicity,
you can just assume that the first element of all the eigenvectors is 1.

(d) Now, consider exponentiating the discrete derivative matrix to move a distance
∆x. Call the resulting matrix M:

M = e∆xD . (2)

What is the result of acting this exponentiated matrix on each of the eigenvectors
that you found in part (c)?
Hint: Consider the Taylor expansion of this exponential. How does Dn act on an
eigenvector of D?
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2. The Legendre polynomials provide a complete, orthonormal basis for all functions on
x ∈ [−1, 1]. We’ll see them in action later, but in this problem we will study how they
can be used to construct the derivative operator for functions on this domain.

There are an infinite number of Legendre polynomials, which is necessary because the
number of possible functions on this domain is also infinite. However, in this problem
we’ll just use the first three Legendre polynomials to construct part of the matrix that
represents the derivative operator ∂/∂x on the domain x ∈ [−1, 1]. These polynomials
are (up to normalization):

P0(x) =
1√
2
, (3)

P1(x) =

√
3

2
x , (4)

P2(x) =

√
5

8
(3x2 − 1) . (5)

(a) Verify that these Legendre polynomials are all orthonormal on the domain x ∈
[−1, 1]. That is, they are L2-normalized and the “dot product” of two distinct
Legendre polynomials is 0: ∫ 1

−1

dxPm(x)Pn(x) = δmn . (6)

(b) Using this basis of functions on x ∈ [−1, 1], construct the 3 × 3 matrix that
represents the derivative operator, ∂/∂x. For example, the element in the first
row and second column of the ∂/∂x matrix would be:(

∂

∂x

)
12

=

∫ 1

−1

dxP0(x)
∂

∂x
P1(x) . (7)

Note the different indexing of the Legendre polynomials and the label of a row or
column.

(c) From this 3×3 derivative matrix, calculate its eigenvalues and eigenvectors. What
does this result mean? Does the derivative ∂/∂x have eigenfunctions on the
domain x ∈ [−1, 1]?

(d) With only the first three Legendre polynomials, P0(x), P1(x), and P2(x), this
is only a complete, orthonormal basis for general quadratic polynomials on x ∈
[−1, 1]. For a polynomial expressed as:

p(x) = ax2 + bx+ c , (8)

for some constants a, b, c, re-write it as a linear combination of the Legendre poly-
nomials. Express the coefficients of this linear combination as a three-dimensional
vector.
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(e) Act on this three-dimensional vector with the derivative matrix that you con-
structed in part (b). Remember, the result represents another linear combination
of Legendre polynomials. Does the result agree with what you would find from
just differentiating the polynomial in part (d)?
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