
Problem Set 11

Phys 342

Due April 24

Exercises, Due Friday, April 24
Email your homework to me at larkoski@reed.edu

1. It’s useful to see how our quantum perturbation theory works in a case that we can
solve exactly. Let’s consider a two-state system in which the Hamiltonian is

Ĥ0 =

(
E0 0
0 E1

)
, (1)

for energies E0 ≤ E1. Now, let’s consider adding a small perturbation to this Hamil-
tonian:

Ĥ ′ =

(
ε ε
ε ε

)
, (2)

for some ε > 0. The complete Hamiltonian of our system we are considering is Ĥ =
Ĥ0 + Ĥ ′.

(a) First, calculate the exact energy eigenstates and eigenvalues of the complete
Hamiltonian. From your complete result, Taylor expand it to first order in ε.

(b) Now, use our formulation of quantum perturbation theory to calculate the first
corrections to the energy eigenstates and eigenvalues. Do these corrections agree
with the explicit expansion from part (a)?

(c) From the Taylor expansion in part (a), for what range of ε does the Taylor ex-
pansion converge?

2. Let’s see how the variational method works in another application. Let’s assume we
didn’t know the ground state energy of the quantum harmonic oscillator and use the
variational method to determine it. First, the Hamiltonian is

Ĥ =
p̂2

2m
+
mω2

2
x̂2 . (3)

Note that this potential is symmetric about x = 0 and position extends over the entire
real line: x ∈ (−∞,∞). This motivates the guess for the ground state wavefunction

ψ(x; a) = N(a2 − x2) , (4)
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for a normalization constant N and a is the parameter that we will minimize over.
Now, this wavefunction is only defined on x ∈ [−a, a].

(a) Let’s first calculate the normalization factor N , as a function of a.

(b) Now, calculate the expectation value of the Hamiltonian on this state, 〈ψ|Ĥ|ψ〉,
as a function of the parameter a.

(c) Finally, minimize the expectation value over a to provide an upper bound on the
ground state energy, E0. How does this estimate compare to the known, exact
value?

3. Let’s now study the power method for estimating the ground state energy, applied to
the quantum harmonic oscillator. For this problem, we will work with the Hamiltonian

Ĥ = ~ω(1 + a†a) , (5)

where a and a† are the familiar lowering and raising operators, respectively. Note the
slight difference between this Hamiltonian and what we would typically think of as the
harmonic oscillator: all we’ve done here is shift the potential up by an amount ~ω/2
which will make some of the mathematical manipulations simpler later. Importantly,
this constant shift does not affect the eigenstates of the Hamiltonian, it just shifts the
eigenvalues up by that same amount.

(a) Let’s first calculate the inverse of this Hamiltonian, Ĥ−1. One answer is, of course,
simply

Ĥ−1 =
1

~ω
1

1 + a†a
. (6)

However, this isn’t so useful for determining how this operator acts on states.
Instead, we can express the inverse Hamiltonian as a sum over products of a and
a†:

Ĥ−1 =
∑
n=0

β0 (a†)nan , (7)

for some coefficients βn. Determine the coefficients βn and thus the inverse Hamil-
tonian Ĥ−1 by demanding that ĤĤ−1 = 1.
Nota Bene: By the way this way of ordering the terms in Ĥ−1 is called normal
order: all raising operators a† are to the left of all lowering operators a in each
term in the sum.

(b) Let’s use this inverse Hamiltonian to estimate the ground state energy of the
harmonic oscillator in which we start with a coherent state |χ〉. Recall that |χ〉
satisfies

a|χ〉 = λ|χ〉 , (8)

for some complex number λ. From this coherent state, what is the expectation
value of the Hamiltonian, 〈χ|Ĥ|χ〉?
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(c) Now, let’s use the inverse Hamiltonian to improve our estimate of the ground
state energy. What is your new estimate of the ground state after one application
of Ĥ−1 on the coherent state? Recall that this estimate is

E0 '
〈χ|Ĥ−1ĤĤ−1|χ〉
〈χ|Ĥ−1Ĥ−1|χ〉

. (9)

You should ultimately find

E0 '
〈χ|Ĥ−1ĤĤ−1|χ〉
〈χ|Ĥ−1Ĥ−1|χ〉

= ~ω
e|λ|

2 − 1∫ |λ|2
0

dx ex−1
x

. (10)

The integral that remains can’t be expressed in terms of elementary functions.
Hint: Remember, ĤĤ−1 = 1. For the denominator factor, it might help to slide
“1” in between the two inverse Hamiltonians, where

1 =
∞∑
n=0

|ψn〉〈ψn| , (11)

where |ψn〉 is the nth energy eigenstate, and recall the definition of the normalized
coherent state from Homework 6.

(d) Now, just to get a sense of this approximation, verify that you get the exact result
for the ground state energy if λ → 0. Also, evaluate the approximation of part
(c) for λ = 1. The remaining integral evaluates to∫ 1

0

dx
ex − 1

x
= 1.31790215 . . . . (12)

How does this result compare to the initial estimate of part (b)?
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