Problem Set 2

Phys 342
Due February 14

Exercises, Due Friday, February 14

1. The Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$ form a complete basis for all 2×2 Hermitian matrices. The Pauli matrices are:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

In class, we studied the properties of σ_{2} and σ_{3}.
(a) Find the eigenvectors for all of the Pauli matrices. Enforce a normalization for the eigenvectors by demanding that their length is 1 . That is, for an eigenvector \vec{v}, require that $\vec{v}^{\dagger} \vec{v}=1$.
(b) As emphasized in class, any explicit representation of a matrix requires a basis in which to write that matrix. Using the basis of eigenvectors of σ_{1}, re-write the three Pauli matrices of Eq. 1 above in that basis. What do you notice about the result?
(c) As Hermitian matrices, they can be exponentiated to construct a corresponding unitary matrix. Let's exponentiate σ_{3} as defined in Eq. 1 to construct the matrix

$$
\begin{equation*}
\mathbb{A}=e^{i \phi \sigma_{3}} \tag{2}
\end{equation*}
$$

where ϕ is a real number. What is the resulting matrix \mathbb{A} ? Write it in standard 2×2 form. Is it actually unitary?
2. The unitary matrix that implements rotations on two-dimensional vectors can be written as:

$$
\mathbb{M}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{3}\\
-\sin \theta & \cos \theta
\end{array}\right)
$$

where θ is the real-valued rotation angle.
(a) Verify that this matrix is indeed unitary.
(b) As a unitary matrix, it can be expressed as the exponential of a Pauli matrix in the form

$$
\begin{equation*}
\mathbb{M}=e^{i \theta \sigma_{j}} \tag{4}
\end{equation*}
$$

for some Pauli matrix σ_{j}. Which Pauli matrix is it? Be sure to show your justification.
3. We introduced unitary operators as those that map the Hilbert space to itself; i.e., those that maintain the normalization constraint that we require of all vectors in the Hilbert space. However, we didn't show the converse, that there always exists a unitary operator that connects two vectors of the Hilbert space. For a Hilbert space \mathcal{H} of twodimensional vectors, consider the vectors $\vec{u}, \vec{v} \in \mathcal{H}$.
(a) We can express these vectors in a particular basis as

$$
\vec{u}=\left(\begin{array}{c}
e^{i \phi_{1}} \tag{5}\\
\cos u \\
e^{i \phi_{2}}
\end{array} \sin u, ~ \vec{v}=\left(\begin{array}{c}
e^{i \theta_{1}}
\end{array}\right), \cos v \begin{array}{c}
i \theta^{2} \\
e^{i \theta_{2}}
\end{array}\right),
$$

for real parameters $u, v, \phi_{1}, \phi_{2}, \theta_{1}, \theta_{2}$. Show that these vectors are normalized to live in the Hilbert space.
(b) In this basis, determine the unitary matrix \mathbb{U} such that

$$
\begin{equation*}
\vec{v}=\mathbb{U} \vec{u} . \tag{6}
\end{equation*}
$$

Hint: Write the matrix \mathbb{U} as

$$
\mathbb{U}=\left(\begin{array}{ll}
a & b \tag{7}\\
c & d
\end{array}\right)
$$

and determine the constraints on a, b, c, d if \mathbb{U} is unitary and maps \vec{u} to \vec{v}.
(c) Can the matrix \mathbb{U} be degenerate? That is, can its determinant ever be 0 ?

