Problem Set 4

Phys 342

Due February 28

Exercises, Due Friday, February 28

1. Consider the following operators that correspond to exponentiating the momentum and position operators, \hat{x} and \hat{p} :

$$\mathbb{X} = e^{i\sqrt{\frac{2\pi c}{\hbar}}\hat{x}}, \qquad \qquad \mathbb{P} = e^{i\sqrt{\frac{2\pi}{c\hbar}}\hat{p}}. \qquad (1)$$

Here, c is some constant.

- (a) What are the units of the constant c? From that, can you provide an interpretation of c?
- (b) Calculate the commutator of X and \mathbb{P} , $[X, \mathbb{P}]$. What does this mean?
- (c) What is the range of eigenvalues of \hat{x} and \hat{p} for which the operators X and P are single-valued? Remember, $e^{i\pi} = e^{i3\pi}$, for example.
- (d) Determine the eigenstates and eigenvalues of the exponentiated momentum operator, \mathbb{P} . That is, what values can λ take and what function $f_{\lambda}(x)$ satisfies

$$\mathbb{P}f_{\lambda}(x) = \lambda f_{\lambda}(x) ? \tag{2}$$

Do the eigenvalues λ have to be real valued? Why or why not?

- (e) Using part (b), what can you say about the eigenstates of X?
- 2. Consider two Hermitian operators \hat{A} and \hat{B} and consider the unitary operators formed from exponentiating them:

$$\mathbb{U}_A = e^{i\hat{A}}, \qquad \qquad \mathbb{U}_B = e^{i\hat{B}}. \tag{3}$$

If \hat{A} and \hat{B} were just numbers, then it would be easy to determine the unitary matrix formed from the product of \mathbb{U}_A and \mathbb{U}_B . However, matrices do not in general commute, so it complicates this product. Using the Taylor expansion of the exponential, find the difference of unitary matrices

$$e^{i\hat{A}}e^{i\hat{B}} - e^{i(\hat{A}+\hat{B})}$$
. (4)

Only consider terms in the Taylor expansion up through cubic order; that is, terms that contain at most the product of three matrices \hat{A} and/or \hat{B} . Under what condition does this difference vanish?

3. An **instanton** is a quantum mechanical excitation that is localized in space like a particle. They are closely related to solitary waves or solitons that were first observed in the mid-19th century as a traveling wave in a canal. We'll study a model for instantons in this problem. Our simple model will be the following. We will consider a quantum system constrained on a circle, and we can define states on this circle by their **winding number** *n*, the number of times that the instanton wraps around the circle before it connects back to itself (think about winding a string around a cylinder and then tying it back together after *n* times around). The winding number *n* can be any integer, positive, negative, or zero, and the sign of the winding number encodes the direction in which it is wrapped.

States with different n are orthogonal, so we will consider the Hilbert space as spanned by the set of states $\{|n\rangle\}_{n=-\infty}^{\infty}$ which are orthonormal:

$$\langle m|n\rangle = \delta_{mn}\,,\tag{5}$$

and we will assume they are complete.

(a) On this Hilbert space, we can define a hopping operator \mathcal{O} which is defined to act on the basis elements as:

$$\mathcal{O}|n\rangle = |n+1\rangle. \tag{6}$$

Show that this means that \mathcal{O} is unitary.

(b) Assume that the state $|\psi\rangle$ is an eigenstate of \mathcal{O} with eigenvalue defined by an angle θ :

$$\mathcal{O}|\psi\rangle = e^{i\theta}|\psi\rangle. \tag{7}$$

Express the state $|\psi\rangle$ as a linear combination of the winding states $|n\rangle$.

(c) The Hamiltonian for this winding system \hat{H} is defined to act as

$$\hat{H}|n\rangle = |n|E_0|n\rangle, \qquad (8)$$

where E_0 is a fixed energy and |n| is the absolute value of the winding number n. Calculate the commutator of the hopping operator and the Hamiltonian, $[\hat{H}, \mathcal{O}]$.

(d) Determine the time dependence of the state $|\psi\rangle$; that is, evaluate

$$|\psi(t)\rangle = e^{-i\frac{Ht}{\hbar}}|\psi\rangle.$$
(9)