Problem Set 4

Phys 342
Due February 28

Exercises, Due Friday, February 28

1. Consider the following operators that correspond to exponentiating the momentum and position operators, \hat{x} and \hat{p} :

$$
\begin{equation*}
\mathbb{X}=e^{i \sqrt{\frac{2 \pi c}{\hbar}} \hat{x}}, \quad \mathbb{P}=e^{i \sqrt{\frac{2 \pi}{c \hbar}} \hat{p}} \tag{1}
\end{equation*}
$$

Here, c is some constant.
(a) What are the units of the constant c ? From that, can you provide an interpretation of c ?
(b) Calculate the commutator of \mathbb{X} and $\mathbb{P},[\mathbb{X}, \mathbb{P}]$. What does this mean?
(c) What is the range of eigenvalues of \hat{x} and \hat{p} for which the operators \mathbb{X} and \mathbb{P} are single-valued? Remember, $e^{i \pi}=e^{i 3 \pi}$, for example.
(d) Determine the eigenstates and eigenvalues of the exponentiated momentum operator, \mathbb{P}. That is, what values can λ take and what function $f_{\lambda}(x)$ satisfies

$$
\begin{equation*}
\mathbb{P} f_{\lambda}(x)=\lambda f_{\lambda}(x) ? \tag{2}
\end{equation*}
$$

Do the eigenvalues λ have to be real valued? Why or why not?
(e) Using part (b), what can you say about the eigenstates of \mathbb{X} ?
2. Consider two Hermitian operators \hat{A} and \hat{B} and consider the unitary operators formed from exponentiating them:

$$
\begin{equation*}
\mathbb{U}_{A}=e^{i \hat{A}}, \quad \mathbb{U}_{B}=e^{i \hat{B}} \tag{3}
\end{equation*}
$$

If \hat{A} and \hat{B} were just numbers, then it would be easy to determine the unitary matrix formed from the product of \mathbb{U}_{A} and \mathbb{U}_{B}. However, matrices do not in general commute, so it complicates this product. Using the Taylor expansion of the exponential, find the difference of unitary matrices

$$
\begin{equation*}
e^{i \hat{A}} e^{i \hat{B}}-e^{i(\hat{A}+\hat{B})} \tag{4}
\end{equation*}
$$

Only consider terms in the Taylor expansion up through cubic order; that is, terms that contain at most the product of three matrices \hat{A} and/or \hat{B}. Under what condition does this difference vanish?
3. An instanton is a quantum mechanical excitation that is localized in space like a particle. They are closely related to solitary waves or solitons that were first observed in the mid-19th century as a traveling wave in a canal. We'll study a model for instantons in this problem. Our simple model will be the following. We will consider a quantum system constrained on a circle, and we can define states on this circle by their winding number n, the number of times that the instanton wraps around the circle before it connects back to itself (think about winding a string around a cylinder and then tying it back together after n times around). The winding number n can be any integer, positive, negative, or zero, and the sign of the winding number encodes the direction in which it is wrapped.
States with different n are orthogonal, so we will consider the Hilbert space as spanned by the set of states $\{|n\rangle\}_{n=-\infty}^{\infty}$ which are orthonormal:

$$
\begin{equation*}
\langle m \mid n\rangle=\delta_{m n} \tag{5}
\end{equation*}
$$

and we will assume they are complete.
(a) On this Hilbert space, we can define a hopping operator \mathcal{O} which is defined to act on the basis elements as:

$$
\begin{equation*}
\mathcal{O}|n\rangle=|n+1\rangle \tag{6}
\end{equation*}
$$

Show that this means that \mathcal{O} is unitary.
(b) Assume that the state $|\psi\rangle$ is an eigenstate of \mathcal{O} with eigenvalue defined by an angle θ :

$$
\begin{equation*}
\mathcal{O}|\psi\rangle=e^{i \theta}|\psi\rangle \tag{7}
\end{equation*}
$$

Express the state $|\psi\rangle$ as a linear combination of the winding states $|n\rangle$.
(c) The Hamiltonian for this winding system \hat{H} is defined to act as

$$
\begin{equation*}
\hat{H}|n\rangle=|n| E_{0}|n\rangle \tag{8}
\end{equation*}
$$

where E_{0} is a fixed energy and $|n|$ is the absolute value of the winding number n. Calculate the commutator of the hopping operator and the Hamiltonian, $[\hat{H}, \mathcal{O}]$.
(d) Determine the time dependence of the state $|\psi\rangle$; that is, evaluate

$$
\begin{equation*}
|\psi(t)\rangle=e^{-i \frac{\hat{H} t}{\hbar}}|\psi\rangle . \tag{9}
\end{equation*}
$$

