Homework 3

Phys 411
September 13, 2018

Due: Friday, September 21

1. In this exercise, we will will study the Chern-Simons current, C. As a form, the Chern-Simons current can be expressed as

$$
\begin{equation*}
C=A \wedge d A \tag{1}
\end{equation*}
$$

(a) Write the Chern-Simons current with explicit indices, $C_{\mu \nu \rho}$, in terms of the vector potential A_{μ} and partial derivatives, ∂_{μ}. It's a three-form, so there should be three anti-symmetrized indices. Completely expand out all anti-symmetrizations.
(b) In three-dimensional spacetime, the Chern-Simons current can be a term in the Lagrangian. To construct the term in the Lagrangian, we contract the ChernSimons three-form with the Levi-Civita tensor:

$$
\begin{equation*}
\mathcal{L} \supset \epsilon^{\mu \nu \rho} C_{\mu \nu \rho} . \tag{2}
\end{equation*}
$$

Express this Lagrangian in components. You should find

$$
\begin{equation*}
\mathcal{L} \supset \epsilon^{\mu \nu \rho} C_{\mu \nu \rho}=6\left(A_{0} F_{12}+A_{1} F_{20}+A_{2} F_{01}\right) . \tag{3}
\end{equation*}
$$

(c) In three-dimensions, is the Chern-Simons term gauge invariant?
2. The action for electromagnetism in Minkowski space is

$$
\begin{equation*}
S\left[A_{\mu}\right]=\int d^{4} x \sqrt{|\eta|}\left(-\frac{1}{4} \eta_{\mu \alpha} \eta_{\nu \beta} F^{\mu \nu} F^{\alpha \beta}\right) . \tag{4}
\end{equation*}
$$

Here, we've explicitly included factors of the metric. We have studied varying this action with respect to the vector potential, A_{μ}. What happens when we vary with respect to the metric, η ? In this problem, we will consider taking the functional derivative with respect to the metric,

$$
\frac{\delta S\left[A_{\mu}\right]}{\delta \eta_{\mu \nu}} .
$$

To calculate this functional derivative, we add to the metric a small deviation $\eta_{\mu \nu} \rightarrow$ $\eta_{\mu \nu}+\epsilon_{\mu \nu}$, and expand the action to first-order in $\epsilon_{\mu \nu}$.
(a) First consider the two Minkowski metrics that contract with the field strength tensors. Show that, to linear order in $\epsilon_{\mu \nu}$

$$
\begin{equation*}
-\frac{1}{4}\left(\eta_{\mu \alpha}+\epsilon_{\mu \alpha}\right)\left(\eta_{\nu \beta}+\epsilon_{\nu \beta}\right) F^{\mu \nu} F^{\alpha \beta}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{\epsilon_{\mu \nu}}{2} F^{\mu \alpha} F_{\alpha}^{\nu} . \tag{5}
\end{equation*}
$$

(b) Now, consider the determinant of the metric, $|\eta|$. Show that, to linear order in $\epsilon_{\mu \nu}$

$$
\begin{equation*}
\sqrt{|\eta+\epsilon|}=\sqrt{|\eta|}-\frac{\epsilon_{\mu \nu}}{2} \eta^{\mu \nu} \tag{6}
\end{equation*}
$$

where we assume that $\sqrt{|\eta|}=1$. Recall that the determinant of the metric is defined as

$$
\begin{equation*}
|\eta|=\epsilon^{\mu \nu \rho \sigma} \eta_{0 \mu} \eta_{1 \nu} \eta_{2 \rho} \eta_{3 \sigma} . \tag{7}
\end{equation*}
$$

(c) Combining these results, show that the functional derivative of the action with respect to the metric is

$$
\begin{equation*}
\frac{\delta S\left[A_{\mu}\right]}{\delta \eta_{\mu \nu}}=-\frac{1}{2} \int d^{4} x\left[F^{\mu \alpha} F_{\alpha}^{\nu}-\frac{\eta^{\mu \nu}}{4} F^{\alpha \beta} F_{\alpha \beta}\right] \tag{8}
\end{equation*}
$$

The tensor that is the integrand is called the stress-energy tensor $T^{\mu \nu}$:

$$
\begin{equation*}
T^{\mu \nu}=F^{\mu \alpha} F_{\alpha}^{\nu}-\frac{\eta^{\mu \nu}}{4} F^{\alpha \beta} F_{\alpha \beta} \tag{9}
\end{equation*}
$$

Note that it is a symmetric tensor: $T^{\mu \nu}=T^{\nu \mu}$.
(d) What is the trace of the stress-energy tensor, $T^{\mu}{ }_{\mu}$?
(e) Is the stress-energy tensor conserved? That is, what is its divergence

$$
\begin{equation*}
\partial_{\mu} T^{\mu \nu}=? \tag{10}
\end{equation*}
$$

(f) Can you provide an interpretation for what it means for the stress-energy tensor to arise from the functional derivative of the action with respect to the metric? Justify this by analogy to electromagnetism.

