
Lecture Notes on Quasi-Monte Carlos

Andrew Larkoski

November 9, 2016

Happy Thanksgiving tomorrow! In this second day of this shortened week, I want to
discuss quasi-Monte Carlo methods for integration. Let’s recall why Monte Carlos were vir-
tuous for integration. In low numbers of dimensions, deterministic integration algorithms
like Simpson’s method are the most accurate for the fewest number of sample points. How-
ever, the timing to evaluate Simpson’s method integral scales exponentially in the number
of dimensions of the integral:

T (N) = O(ND) , (1)

where N is the number of grid points in one dimension and D is the number of dimen-
sions. This is a manifestation of the “curse of dimensionality”: for a given accuracy, we
must increase the number of grid points by a huge amount as the number of dimensions in-
creases. Thus, it becomes increasingly difficult to use Simpson’s method for high dimensional
integrals.

By contrast, Monte Carlo integration, which randomly samples the integrand, is much
more well-behaved in high dimensions. The accuracy of Monte Carlo scales like

|I − INMC| = O(N−1/2) , (2)

where I is the true value of the integral, INMC is the Monte Carlo approximation with N
dart throws. This is independent of the dimension; the accuracy always scales as N−1/2.
During our week on Monte Carlos, we discussed where this came from as effectively an
implementation of Poisson statistics.

For all of its virtues, however, Monte Carlos still have some issues. Consider the distri-
bution of Monte Carlo points (just uniform pseudorandom numbers) over the unit square:

1

Mersenne Twister

Note that there are regions of high density (lots of points) and regions of low density (few
points). This is sub-optimal for integral evaluation.

In the high density regions, the integrand is sampled very well, and so the integral over
high density regions is well-approximated. However, in the low density regions the integrand
is hardly sampled at all, and so the integral is totally unknown in that region. For optimal
calculation of the integral, we would want better, more evenly spaced, points.

So, for optimal integral evaluation, we want to combine aspects of Simpson’s method (or
the like) with Monte Carlos. We want to:

• Avoid the curse of dimensionality like Monte Carlo,

• Even point spacing like Simpson.

If we can accomplish both of these things, then we would have an even better integrator
than Monte Carlo.

This was the goal of Russian mathematician Ilya Sobol: to find the sequence of points
{xi}Ni=1 such that

lim
N→∞

1

N

N∑
i=1

f(xi) =

∫ 1

0

f(x) dx (3)

converges as fast as possible for any integrable function f(x) on x ∈ [0, 1]. (This domain is
representative: it could be any domain.) One sequence that does this is now named after
Sobol, called the Sobol sequence. The Sobol sequence is a “low-discrepancy” sequence (its
points don’t vary wildly like (pseudo)random numbers) and it is a deterministic sequence
(unlike random numbers, in principle).

To visualize the difference between Sobol sequence numbers and (pseudo)random num-
bers, we can use Mathematica to plot 1000 Sobol numbers and pseudorandom numbers (with
the Mersenne Twister algorithm). Here are the comparison plots:

2

Mersenne Twister Sobol Sequence

Sobol sequence numbers have a much more regular pattern than pseudorandom numbers.
The Sobol numbers also clump up less than random numbers.

This is advantageous for integration. It has been shown that the error on an integral
using quasi-Monte Carlo (i.e., Monte Carlo method with Sobol sequence points) is:

|I − INqMC| = O
(

logDN

N

)
, (4)

where N is the number of points and D is the dimension. Unlike strict Monte Carlo, this does
depend on the number of dimensions, but much weaker than Simpson’s method. Also, for
sufficiently large N , quasi-Monte Carlo always beats the accuracy of Monte Carlo, because
there exists a minimum NqMC such that

logDNqMC

NqMC

< N
−1/2
qMC . (5)

While the advantages of quasi-Monte Carlo integration are only large in the N → ∞
limit, quasi-Monte Carlo methods are standard for high-dimensional performance integra-
tion evaluation. First, within Mathematica, one can specify how to perform a numerical
integral. The NIntegrate function in Mathematica performs numerical integration using a
huge variety of options: among them, Simpson, Monte Carlo, quasi-Monte Carlo, but also
many more. In particular, something we didn’t discuss, NIntegrate adapts the integration
grid, depending on the derivative of the function in a given region. To call NIntegrate in
its default settings use:

NIntegrate[f[x],{x,a,b}]

For multi-dimensional integrals, NIntegrate starts on the outside and works in:

3

NIntegrate[f[x,y],{x,a1,b1},{y,a2,b2}]

First the y integral is done, then the x integral. To call the quasi-Monte Carlo method
requires just adding a call:

NIntegrate[f[x],{x,a,b},Method->"QuasiMonteCarlo"]

In Mathematica, there are 22 different integration methods.
However, perhaps the most powerful numerical integration program is called CUBA, and

you can download it at http://www.feynarts.de/cuba/. CUBA has been written in C++,
Fortran, and as a plugin to Mathematica. I’ll discuss the Mathematica plugin.

Once you’ve downloaded CUBA, unzip/untar the compressed file. Then, in the folder,
open up a command line and enter

> ./configure MCFLAGS=-st

> make

This compiles the program. To run it, we just open Mathematica and link to one of the
integrators in CUBA. There are four built-in numerical integrators in CUBA: Suave, Cuhre,
Divonne, and Vegas. I’ll just discuss Vegas and its use.

Vegas is an adaptive quasi-Monte Carlo integrator (adaptive = more dart throws where
the function is very steep). To use it, we just link using the command:

Install["Vegas"]

(This needs to point to the directory where CUBA was installed.) To run Vegas, it is just
like NIntegrate, e.g.,

Vegas[f[x],{x,a,b}]

Let’s see how this works; let’s integrate the function f(x) = x on x ∈ [0, 1]:

Vegas[x,{x,0,1}]

The output is shown in Fig. 1. Look at the output: Vegas tells us how many integrand
evaluations were performed, the estimated error, and the χ2 (ignored here). The evaluation
terminates once the estimated error is less than 10−3 times the estimated integral.

What if we integrate something more complicated, like

f(x, y) = e−x/y
2

, (6)

on x, y ∈ [0, 1]? Well, if we run Vegas now, we find the output in Fig. 2. We don’t reach
10−3 accuracy after 50,000 evaluations! So, we need to up the number of Sobol numbers to
use. We can do this using MaxPoints:

Vegas[Exp[-x/y/y],{x,0,1},{y,0,1},MaxPoints->200000]

4

http://www.feynarts.de/cuba/

��������� Vegas[x, {x, 0, 1}]

Iteration 1: 1000 integrand evaluations so far

[1] 0.499946 +- 0.00912348 chisq 0 (0 df)

Iteration 2: 2500 integrand evaluations so far

[1] 0.499802 +- 0.00306699 chisq 0.000281156 (1 df)

Iteration 3: 4500 integrand evaluations so far

[1] 0.499868 +- 0.00121244 chisq 0.000825048 (2 df)

Iteration 4: 7000 integrand evaluations so far

[1] 0.500404 +- 0.000545954 chisq 0.246156 (3 df)

Iteration 5: 10000 integrand evaluations so far

[1] 0.500016 +- 0.000356378 chisq 1.12742 (4 df)

������ ������ ����� �������� ������������

��������� {{0.500016, 0.000356378, 0.110103}}

Figure 1: Vegas output.

With 200,000 points, we are able to reach the desired accuracy. What if we want to increase
the accuracy? We can do this with PrecisionGoal. Say, we want 10−4 accuracy rather than
the default 10−3. We then run

Vegas[Exp[-x/y/y],{x,0,1},{y,0,1},PrecisionGoal->4,MaxPoints->20000000]

We also crank up the number of points to 20,000,000 to ensure that the accuracy can be
reached.

Cool!

5

��������� Vegasⅇ
-
x
y2 , {x, 0, 1}, {y, 0, 1}

Iteration 1: 1000 integrand evaluations so far

[1] 0.269798 +- 0.0092531 chisq 0 (0 df)

Iteration 2: 2500 integrand evaluations so far

[1] 0.270486 +- 0.00381476 chisq 0.00666425 (1 df)

Iteration 3: 4500 integrand evaluations so far

[1] 0.269927 +- 0.00227444 chisq 0.0400652 (2 df)

Iteration 4: 7000 integrand evaluations so far

[1] 0.269892 +- 0.00162266 chisq 0.040539 (3 df)

Iteration 5: 10000 integrand evaluations so far

[1] 0.269874 +- 0.00126528 chisq 0.0408502 (4 df)

Iteration 6: 13500 integrand evaluations so far

[1] 0.27004 +- 0.00105696 chisq 0.0980477 (5 df)

Iteration 7: 17500 integrand evaluations so far

[1] 0.270038 +- 0.000901885 chisq 0.098075 (6 df)

Iteration 8: 22000 integrand evaluations so far

[1] 0.270113 +- 0.000799083 chisq 0.130769 (7 df)

Iteration 9: 27000 integrand evaluations so far

[1] 0.270098 +- 0.000712561 chisq 0.13249 (8 df)

Iteration 10: 32500 integrand evaluations so far

[1] 0.27006 +- 0.000641712 chisq 0.147531 (9 df)

Iteration 11: 38500 integrand evaluations so far

[1] 0.270076 +- 0.000585664 chisq 0.151226 (10 df)

Iteration 12: 45000 integrand evaluations so far

[1] 0.270075 +- 0.000539497 chisq 0.151272 (11 df)

Iteration 13: 52000 integrand evaluations so far

[1] 0.270049 +- 0.000498944 chisq 0.16625 (12 df)

������ ������� �������� ��� ��� ������� ������ ����� �������� ������������

��������� 0.270049, 0.000498944, 4.26707 ×10-10

Figure 2: Vegas output.

6

