Homework Problems

- 1. Estimate the kinetic energy of the air in our classroom, Phys 240A.
- 2. Given a partition function

$$Z = \sum_{i} e^{-\beta E_i} \tag{63}$$

of a system, prove that the entropy S can be written as

$$S = -k_B \sum_{i} p_i \log p_i = -\beta^2 k_B \frac{\partial}{\partial \beta} \frac{\log Z}{\beta} \,. \tag{64}$$

Here, p_i is the probability that the system is in the state with energy E_i .

3. From the partition function given in lecture, calculate the energy and entropy of the 1D Ising Model with N lattice sites. What is the entropy at $T = \infty$ ($\beta = 0$), in the limit that $N \to \infty$? What does this mean for the number of states that contribute at $T = \infty$? What is the entropy at T = 0 ($\beta = \infty$)? What states can exist and how many are there?