Homework Problems

1. Estimate the kinetic energy of the air in our classroom, Phys 240A.
2. Given a partition function

$$
\begin{equation*}
Z=\sum_{i} e^{-\beta E_{i}} \tag{63}
\end{equation*}
$$

of a system, prove that the entropy S can be written as

$$
\begin{equation*}
S=-k_{B} \sum_{i} p_{i} \log p_{i}=-\beta^{2} k_{B} \frac{\partial}{\partial \beta} \frac{\log Z}{\beta} . \tag{64}
\end{equation*}
$$

Here, p_{i} is the probability that the system is in the state with energy E_{i}.
3. From the partition function given in lecture, calculate the energy and entropy of the 1D Ising Model with N lattice sites. What is the entropy at $T=\infty(\beta=0)$, in the limit that $N \rightarrow \infty$? What does this mean for the number of states that contribute at $T=\infty$? What is the entropy at $T=0(\beta=\infty)$? What states can exist and how many are there?

